Section 6.11 Summary 177

6.11

Format Description Example
%a abbreviated weekday name Tue
%A full weekday name Tuesday
%b abbreviated month name Feb
$B full month name February
%c date and time Tue Feb 10 18:27:38 2004
$C year/100: [00-99} 20
%d day of the month: [01-31] 10
%D date [MM/DD/YY] 02/10/04
%e day of month (single digit preceded by space) [1-31] | 10
$F ISO 8601 date format [YYYY-MM-DD] 2004-02-10
%g last two digits of 1SO 8601 week-based year [00-99] 04
%G 1SO 8601 week-based year 2004
$h same as %b Feb
$H hour of the day (24-hour format): [00-23] 18
$T hour of the day (12-hour format): [01-12] 06
%3 day of the year: [001-366] 041
$m month: [01-12] 02
M minute: [00-59] 27
%n newline character
%p AM/PM PM
$r locale’s time (12-hour format) 06:27:38 PM
%R same as “%H:%M" 18:27
%S second: [00-60] 38
st horizontal tab character
$T same as “%H:%M:%S” 18:27:38
%u ISO 8601 weekday [Monday=1, 1-7] 2
$U Sunday week number: [00-53] 06
vV ISO 8601 week number: [01-53] 07
W weekday: [0=Sunday, 0-6] 2
W Monday week number: [00-53] 06
%X date 02/10/04
%X time 18:27:38
£ 3 last two digits of year: [00-99] 04
£2 4 year 2004
%z offset from UTC in ISO 8601 format -0500
%2z time zone name EST
%% translates to a percent sign %

Figure 6.9 Conversion specifiers for strftime

Summary

The password file and the group file are used on all UNIX systems. We've looked at the
various functions that read these files. We've also talked about shadow passwords,
which can help system security. Supplementary group IDs provide a way to participate
in multiple groups at the same time. We also looked at how similar functions are
provided by most systems to access other system-related data files. We discussed the

178 System Data Files and Information Chapter 6

POSIX.1 functions that programs can use to identify the system on which they are
running. We finished the chapter with a look at the time and date functions provided
by ISO C and the Single UNIX Specification.

Exercises

6.1 If the system uses a shadow file and we need to obtain the encrypted password, how do we
do it?

6.2 If you have superuser access and your system uses shadow passwords, implement the
previous exercise.

6.3 Write a program that calls uname and prints all the fields in the utsname structure.
Compare the output to the output from the uname(1) command.

6.4 Calculate the latest time that can be represented by the time_t data type. After it wraps
around, what happens?

6.5 Write a program to obtain the current time and print it using strftime, so that it looks like

the default output from date(l). Set the TZ environment variable to different values and
see what happens.

7.1

7.2

Process Environment

Introduction

Before looking at the process control primitives in the next chapter, we need to examine
the environment of a single process. In this chapter, we'll see how the main function is
called when the program is executed, how command-line arguments are passed to the
new program, what the typical memory layout looks like, how to allocate additional
memory, how the process can use environment variables, and various ways for the
process to terminate. Additionally, we’ll look at the longjmp and setjmp functions
and their interaction with the stack. We finish the chapter by examining the resource
limits of a process.

main Function

’ A C program starts execution with a function called main. The prototype for the main

function is

int main(int argc, char *argu (1) ;

where argc is the number of command-line arguments, and argu is an array of pointers
to the argument@We describe these arguments in Section 7.4.

When a C program is executed by the kernel—by one of the exec functions, which
we describe in Section 8.10—a special start-up routine is called before the main
function is called. The executable program file specifies this routine as the starting
address for the program; this is set up by the link editor when it is invoked by the C
compiler. This start-up routine takes values from the kernel-—the command-line
arguments and the environment—and sets things up so that the main function is calleg)
as shown earlier.

- 179

180 Process Environment Chapter 7

7.3 Process Termination

There are eight ways for a process'to terminate. Normal termination occurs in five

ways:
1. Return from main
2. Calling exit
3. Calling exitor Exit
4. Return of the last thread from its start routine (Section 11.5)
5. Calling pthread exit (Section 11.5) from the last thread

Abnormal termination occurs in three ways:

6. Calling abort (Section 10.17)
%7. Receipt of a signal (Section 10.2)
8. Response of the last thread to a cancellation request (Sections 11.5 and 12.7)

For now, we'll ignore the three termination methods specific to threads until we discuss
threads in Chapters 11 and 12.

The start-up routine that we mentioned in the previous section is also written so that if
the main function returns, the exit function is called. If the start-up routine were
coded in C (it is often coded in assembler) the call to main could look like

exit (main(arge, argv));

T —
——

Exit Functions

Three functions terminate a program normally: _exit and _Exit, which return to the
kernel immediately, and exit, which performs certain cleanup processing and then
returns to the kérnel. '

#include <stdlib.h>
void exit (int status) ;
void _Exit (int status) ;

#include <unistd.hs>

void _exit (int status) ;

We'll discuss the effect of these three functions on other processes, such as the children
and the parent of the terminating process, in Section 8.5.

The reason for the different headers is that exit and _Exit are specified by ISO C, whereas
_exit is specified by POSIX.1.

Section 7.3 Process Termination 181

Historically, the exit function has always performed a clean shutdown of the
standard I/O library: the fclose function is called for all open streams. Recall from
Section 5.5 that this causes all buffered output data to be flushed (written to the file).

All three exit functions expect a single integer argument, which we call the exit
status. Most UNIX System shells provide a way to examine the exit status of a process.
If (a) any of these functions is called without an exit status, (b) main does a return
without a return value, or (c) the main function is not declared to return an integer, the
exit status of the process is undefined. However, if the return type of main is an integer
and main “falls off the end” (an implicit return), the exit status of the process is 0.

This behavior is new with the 1999 version of the ISO C standard. Historically, the exit status
was undefined if the end of the main function was reached without an explicit return
statement or call to the exit function.

Returning an integer value from the main function is equivalent to calling exit .
with the same value. Thus o

exit (0);
is the same as
return(0) ;,

from the main function.

Example

The program in Figure 7.1 is the classic “hello, world” example.

#include <stdio.h>

main ()

{
}

printf ("hello, world\n");

Figure 7.1 Classic C program

When we compile and run the program in Figure 7.1, we see that the exit code is
random. If we compile the same program on different systems, we are likely to get
different exit codes, depending on the contents of the stack and register contents at the
time that the main function returns:

$ cc hello.c

$./a.out
hello, world
$ echo $? print the exit status

13

182

Process Environment Chapter 7

Now if we enable the 1999 ISO C compiler extensions, we see that the exit code changes:

$ cc -std=c99 hello.c enable gcc’s 1999 ISO C extensions
hello.c:4: warning: return type defaults to “int~

$./a.out

hello, world

$ echo §? print the exit status

0

Note the compiler warning when we enable the 1999 ISO C extensions. This warning is
printed because the type of the main function is not explicitly declared to be an integer. If we
were to add this declaration, the message would go away. However, if we were to enable all
recommended warnings from the compiler (with the -Wall flag), then we would see a
warning message something like “control reaches end of nonvoid function.”

The declaration of main as returning an integer and the use of exit instead of return
produces needless warnings from some compilers and the 1int(1) program. The problem is
that these compilers don’t know that an exit from main is the same as a return. One way
around these warnings, which become annoying after a while, is to use return instead of
exit from main. But doing this prevents us from using the UNIX System'’s grep utility to
locate all calls to exit from a program. Another solution is to declare main as returning
void, instead of int, and continue calling exit. This gets rid of the compiler warning but
doesn’t look right (especially in a programming text), and can generate other compiler
warnings, since the return type of main is supposed to be a signed integer. In this text, we
show main as returning an integer, since that is the definition specified by both ISO C and
POSIX.1.

Different compilers vary in the verbosity of their warnings. Note that the GNU C compiler
usually doesn’t emit these extraneous compiler warnings unless additional wammg options
are used. o

In the next chapter, we'll see how any process can cause a program to be executed, wait
for the process to complete, and then fetch its exit status.

atexit Function

With ISO C, a process can register up to 32 functions that are automatically called by
exit. These are called exit handlers and are registered by calling the atexit functlon

#include <stdlib.h>

int atexit(void (*func) (void));

Returns: 0 if OK, nonzero on error

This declaration says that we pass the address of a function as the argument to atexit.
When this function is called, it is not passed any arguments and is not expected to
return a value. The exit function calls these functions in reverse order of their
registration. Each function is called as many times as it was registered.-

Section 7.3 Process Termination 183

These exit handlers first appeared in the ANSI C Standard in 1989. Systems that predate ANSI
C, such as SVR3 and 4.3BSD, did not provide these exit handlers.

ISO C requires that systems support at least 32 exit handlers. The sysconf function can be
used to determine the maximum number of exit handlers supported by a given platform (see
Figure 2.14).

With ISO C and POSIX.1, exit first calls the exit handlers and then closes (via
fclose) all open streams. POSIX.1 extends the ISO C standard by specifying that any
exit handlers installed will be cleared if the program calls any of the exec family of
functions. Figure 7.2 summarizes how a C program is started and the various ways it
can terminate.

exitp- - - - --——--—-------~-------—-~--------~-~7=7")
or ! :
:Exl t, user |
X functions :
| i
I £ .)
exitl g = |
| . v i
or | i
_Exit main exit I
. - . |user process
i function [(doesnotreturn) | function i
I I
| £) - |
: 2 E . standard 1/O :
-
| ! —ex1t cleanup |
! | Cstart or '
| star -up Exit |
1 routine - |
| |
I i
S R SR 3
exec
\
kernel

Figure 7.2 How a C program is started and how it terminates

Note that the only way a @rogram is executed by the kernel is when one of the exec
functions is called. The only way a process voluntarily terminates is when _exit or
_Exit is called, either explicitly or implicitl@(by calling exit). A process can also be
involuntarily terminated by a signal (not shown in Figure 7.2).

184 Process Environment

Chapter 7

Example

The program in Figure 7.3 demonstrates the use of the atexit function.

#include "apue.h"

static void my exitl(void);
static void my_exit2(void);

int

main(void)

{

}

if (atexit(my exit2) != 0)

err_sys("can’t register my exit2");

if (atexit (my exitl) != 0)

err_sys("can’'t register my exitl");

if (atexit (my_exitl) != 0)

err_sys("can’'t register my exitl");

printf ("main is done\n");
return(0) ;

static void
my_exitl (void)

}

printf("first exit handler\n");

static void
my_exit2(void)

printf ("second exit handler\n");

Executing the program in Figure 7.3 yields

An exit handler is called once for each time it is re

Figure 7.3 Example of exit handlers

$./a.out

main is done

first exit handler

first exit handler

second exit handler

gistered. In Figure 7.3,(th_e first exit

handler is registered twice, so it is called t'v\i()"ti’ihéséw Note that we don’t call exit;
instead, we return from main.

O

Section 7.5 : Environment List 185

7.4 Command-Line Arguments
When a program is executed, the process that does the exec can pass command-line
arguments to the new program. This is part of the normal operation of the UNIX
system shells. We have already seen this in many of the examples from earlier chapters.
Example
The program in Figure 7.4 echoes all its command-line arguments to standard output.
Note that the normal echo(1) program doesn’t echo the zeroth argument.
#include "apue.h"
int
main (int argc, char *argvl(])
{
int i;
for (i = 0; i < argc; i++) /* echo all command-line args */
printf("argv[%d]: $s\n", i, argviil);
exit (0);
}
Figure 7.4 Echo all command-line arguments to standard output
If we compile this program and name the executable echoarg, we have
$./echoarg argl TEST foo
argv(0]: ./echoarg
argv([1l]: argl
argv([2]}: TEST
argv([3]: foo
We are guaranteed by both ISO C and POSIX.1 that argv [argc] is a null pointer. This
lets us alternatively code the argument-processing loop as
for (i = 0; argv([i] != NULL; i++) o
. AN AETNCRY
75 Environment List\? | '° A

Each program is also passed an environment list. / Like the argument list, the
environment list is an array of character pointers, with each pointer containing the
address of a null-terminated C string. The address of the array of pointers is contained
in the global variable environﬁ

extern char **environ;

For example, if (ﬁ\e environment consisted of five strings), it could look like Figure 7.5.
ere we explicitly show the null bytes at the end of each string. We'll call environ the

186

Process Environment Chapter 7

7.6

/

environment environment environment
pointer list strings

environ: ~————— HOME=/home/sar\0

———— PATH=: /bin: /usr/bin\0

—t+——— SHELL=/bin/bash\0

————— USER=sar\0

————# LOGNAME=sar\0

NULL

Figure 7.5 Environment consisting of five C character strings

environment pointer, the array of pointers the environment list, and the strings they point
to the environment strings.
By convention, the environment consists of

name=value

strings, as shown in Figure 7.5. Most predefined names are entirely uppercase, but this
is only a convention.

Historically, most UNIX systems have provided a third argument to the main
function that is the address of the environment list:

int main(int argc, char *argv[], char *envpl]);

Because ISO C specifies that the main function be written with two arguments, and
because this third argument provides no benefit over the global variable environ,
POSIX.1 specifies that environ should be used instead of the (possible) third
argument. (Access to specific environment variables is normally through the getenv
and putenv functions,; described in Section 7.9, instead of through the environ
variable. But to go through the entire environment, the environ pointer must be used.

Memory Layout of a C Program

Historically, a C program has been composed of the following pieces:

* Text segment, the machine instructions that the CPU executes. Usually, the text
" segment is sharable so that only a single copy needs to be in memory for
frequently executed programs, such as text editors, the C compiler, the shells,
and.so on. Also, the text segment is often read-only, to prevent a program from
accidentally modifying its instructions.

Section 7.6 Memory Layout of a C Program 187

o Initialized data segment, usually called simply the data segment, containing
variables that are specifically initialized in the program. For example, the C
declaration ’ '

int maxcount = 99;

appearing outside any function causes this variable to be stored in the initialized
data segment with its initial value.

e Uninitialized data segment, often called the “bss” segment, named after an
ancient assembler operator that stood for “block started by symbol.” Data in
this segment is initialized by the kernel to arithmetic 0 or null pointers before the
program starts executing. The C declaration

long sum[1000] ;

appearing outside any function causes this variable to be stored in the
uninitialized data segment.

o Stack, where automatic variables are stored, atong with information that is saved
each time a function is called. Each time a function is called, the address of
where to return to and certain information about the caller’s environment, such
as some of the machine registers, are saved on the stack. The newly called
function then allocates room on the stack for its automatic and temporary
variables. This is how recursive functions in C can work. Each time a recursive
function calls itself, a new stack frame is used, so one set of variables doesn’t
interfere with the variables from another instance of the function.

¢ Heap, where dynamic memory allocation usually takes place. Historically, the

heap has been located between the uninitialized data and the stack:)
Figure 7.6 shows the typical arrangement of these segments. This is a logical picture of
how a program looks; there is no requirement that a given implementation arrange its
memory in this fashion. Nevertheless, this gives us a typical arrangement to describe.
With Linux on an Intel x86 processor, the text segment starts at location 0x08048000,
and the bottom of the stack starts just below 0xC0000000. (The stack grows from
higher-numbered addresses to lower-numbered addresses on this particular
architecture.) ‘The unused virtual address space between the top of the heap and the top
of the stack is large,)

Several more segment types exist in an a.out, containing the symbol table, debugging
information, linkage tables for dynamic shared libraries, and the like. These additional
sections don’t get loaded as part of the program’s image executed by a process.

Note from Figure 7.6 that fthe contents of the uninitialized data segment are not
g g

stored in the program file on disk. This is because the kernel sets it to 0 before the
program starts running. The only portions of the program that need to be saved in the

program file are the text segment and the initialized dat:f;}

188

Process Environment Chapter 7

1.7

high address command-line arguments
and environment variables

heap
uninitialized data w initialized to
(bss) j zero by exec
initialized data read from
program file
text by exec

low address

Figure 7.6 Typical memory arrangement

The size(1) command reports the sizes (in bytes) of the text, data, and bss
segments. For example:

$ size /usr/bin/cc /bin/sh
text data bss. dec hex filename
79606 1536 916 82058 1408a /usr/bin/cc
619234 21120 18260 658614 al0cbé /bin/sh

The fourth and fifth columns are the total of the three sizes, displayed in decimal and
hexadecimal, respectively.

Shared Libraries

Most UNIX systems today support shared libraries. Arnold [1986] describes an early
implementation under System/_\V, and Gingell et al. [1987] describe a different
implementation under SunOS. {Shared libraries remove the common library routines
from the executable file, instead maintaining a single copy of the library routine
somewhere in memory that all processes reference. This reduces the size of each
executable file but may add some runtime overhead; either when the program is first
executed or the first time each shared library function is called. @nother advantage of
shared libraries is that library functions can be replaced with new versions without
having to relink edit every program that uses the librar@ (This assumes that the
number and type of arguments haven’t changed.)

Section 7.8 Memory Allocation 189

Different systems provide different ways for a program to say that it wants to use or
not use the shared libraries. Options for the cc(1) and 1d(1) commands are typical. As
an example of the size differences, the following executable file—the classic hello.c
program—was first created without shared libraries:

$ cc -static hellol.c prevent gcc from using shared libraries
$ 1ls -1 a.out
-rwxrwxr-x 1 sar 475570 Feb 18 23:17 a.out
$ size a.out
text data bss dec hex filename
375657 3780 3220 382657 5décl a.out

If we compile this program to use shared libraries, the text and data sizes of the
executable file are greatly decreased:

$ cc hellol.c gec defaults to use shared libraries
$ 1s -1 a.out
-TWXYWXr-x 1 sar 11410 Feb 18 23:19 a.out
$ size a.out
text data bss dec hex filename
872 256 4 1132 46c a.out

7.8 Memory Allocation

/ ISO C specifies three functions for memory allocation:
\ -
S L

malloc, which allocates a specified number of bytes of- memory. The initial
(‘f,\ value of the memory is indeterminate.
2

2. calloc, which allocates space for a specified number of objects of a specified
size. The space is initialized to all 0 bits.

3. realloc, which increases or decreases the size of a previously allocated area.
When the size increases, it may involve moving the previously allocated area
somewhere else, to provide the additional room at the end. Also, when the size
increases, the initial value of the space between the old contents and the end of
the new area is indeterminate.)

#include <stdlib.h>

void *malloc(size_t size) ;

void *calloc(size_t nobj, size_t size);
void *realloc(void *ptr, size_t newsize) ;

All three return: non-null pointer if OK, NULL on error

void free(void *ptr);

190

Process Environment Chapter 7

@

(

)

The pointer returned by the three allocation functions is guaranteed to be suitably
aligned so that it can be used for any data object. For example, if the most restrictive
alignment requirement on a particular system requires that doubles must start at
memory locations that are multiples of 8, then all pointers returned by these three
functions would be so aligned.

Because the three alloc functions return a generic void * pointer, if we
#include <stdlib.h> (to obtain the function prototypes), we do not explicitly have
to cast the pointer returned by these functions when we assign it to a pointer of a
different type.

-The function free causes the space pointed to by ptr to be deallocated. This freed
space is usually put into a pool of available memory and can be allocated in a later call
to one of the three alloc functions.

The realloc function lets us increase or decrease the size of a previously allocated
are@(The most common usage is to increase an area.) For example, if we allocate room
for 512 elements in an array that we fill in at runtime but find that we need room for
more than 512 elements, we can call realloc. If there is room beyond the end of the
existing region for the requested space, then realloc doesn’t have to move anything; it
simply allocates the additional area at the end and returns the same pointer that we
passed it. But if there isn’t room at the end of the existing region, realloc allocates
another area that is large enough, copies the existing 512-element array to the new area,
frees the old area, and returns the pointer to the new area. Because the area may move,
we shouldn’t have any pointers into this area. Exercise 4.16 shows the use of realloc
with getcwd to handle any length pathname. Figure 17.36 shows an example that uses
realloc to avoid arrays with fixed, compile-time sizes.

Note that the final argument to realloc is the new sxze > of the region, not the
difference between the old and new sizes. As a special case,\ if ptr is a null pointer,
realloc behaves like malloc and allocates a region of the specified newszzﬁ

Older versions of these routines allowed us to realloc a block that we had freed since the
last call to malloc, realloc, or calloc. This trick dates back to Version 7 and exploited the
search strategy of malloc to perform storage compaction. Solaris still supports this feature,
but many other platforms do not. This feature is deprecated and should not be used.

The allocation routines are usually implemented with the sbrk(2) system call. This
system call expands (or contracts) the heap of the process. (Refer to Figure 7.6.) A
sample implementation of malloc and free is given in Section 8.7 of Kernighan and
Ritchie [1988].

Although sbrk can expand or contract the memory of a process, most versions of
malloc and free never decrease their memory size. [The space that we free is
available for a later allocation, but the freed space is not usually returned to the kernel;
that space is kept in the malloc pool.)

It is important to realize that most implementations allocate a little more space than
is requested and use the additional space for record keeping—the size of the allocated
block, a pointer to the next allocated block, and the like. This means that writing past
the end of an allocated area could overwrite this record-keeping information in a later
block. These types of errors are often catastrophic, but difficult to find, because the

Section 7.8 Memory Allocation 191

error may not show up until much later. Also, it is possible to overwrite this record
keeping by writing before the start of the allocated area.

Writing past the end or before the beginning of a dynamically-allocated buffer can
corrupt more than internal record-keeping information. The memory before and after a
dynamically-allocated buffer can potentially be used for other dynamically-allocated
objects. These objects can be unrelated to the code corrupting them, making it even
more difficult to find the source of the corruption.

P Other possible errors that can be fatal are freeing a block that was already freed and

(y calling free with a pointer that was not obtained from one of the three alloc
functions. {f a process calls malloc, but forgets to call free, its memory usage
continually increases; this is called 1eakage.>By not calling free to return unused space,
the size of a process’s address space slowly increases until no free space is left. During
this time, performance can degrade from excess paging overhead.

Because memory allocation errors are difficult to track down, some systems provide
versions of these functions that do additional error checking every time one of the three
alloc functions or free is called. These versions of the functions are often specified
by including a special library for the link editor. There are also publicly available
sources that you can compile with special flags to enable additional runtime checking.

FreeBSD, Mac OS X, and Linux support additional debugging through the setting of
environment variables. In addition, options can be passed to the FreeBSD library through the
symbolic link /etc/malloc.conf.

Alternate Memory Allocators

Many replacements for malloc and free are available. Some systems already include
libraries providing alternate memory allocator implementations. Other systems
provide only the standard allocator, leaving it up to software developers to download
alternatives, if desired. We discuss some of the alternatives here.

libmalloc

SVR4-based systems, such as Solaris, include the 1ibmalloc library, which provides a
set of interfaces matching the ISO C memory allocation functions. ﬁhe libmalloc
library includes mallopt, a function that allows a process to set certain variables that
control the operation of the storage allocator. A function called mallinfo is also
available to provide statistics on the memory allocator. ,

vmalloc

Vo [1996] describes a memory allocator that{gllows processes to allocate memory using
different techniques for different regions of memory.) In addition to the functions
specific to vmalloc, the library also provides emilations of the ISO C memory
allocation functions.

192

Process Environment Chapter 7

quick-£fit

Historically, the standard malloc algorithm used either a best-fit or a first-fit memory
allocation strategy. ‘Quick-fit is faster than either, but tends to use more memory.
Weinstock and Wulf [1988] describe the algorithm, which is based on splitting up
memory into buffers of various sizes and maintaining unused buffers on different free
lists, depending on the size of the buffers. Free implementations of malloc and free
based on quick-fit are readily available from several FTP sites."

alloca Function

7.9

One additional function is also worth mentioning.. The function alloca has the same
calling sequence as malloc; however, instead of allocating memory from the heap, the
memory is allocated from the stack frame of the current function. The advantage is that
we don’t have to free the space; it goes away automatically when the function returns.
The alloca function increases the size of the stack frame. The dlsadvantage is that
some systems can’t support alloca, if it's impossible to increase the size of the stack
frame after the function has been called. Nevertheless, many software packages use it,
and implementations exist for a wide variety of systems.

All four platforms discussed in this text provide the alloca function.

Environment Variables

As we mentioned earlier, the environment strings are usually of the form
name=value

The UNIX kernel never looks at these strings; their interpretation is up to the various
applications. The shells, for example, use numerous environment variables. Some,
such as HOME and USER, are set automatically at login, and others are for us to set. We
normally set environment variables in a shell start-up file to control the shell’s actions.
If we set the environment variable MAILPATH, for example, it:tells the Bourne shell,
GNU Bourne-again shell, and Korn shell where to look for mail.

ISO C defines a function that we can use to fetch values from the environment, but
this standard says that the contents of the environment are implementation defined.

#include <stdlib.h>
char *getenv(const char *name) ;

Returns: pointer to value associated with name, NULL if not found

Section 7.9 Environment Variables 193

Note that this function returns a pointer to the value of a name=value string. We should
always use géignv to fetch a specific value from the environment, instead of accessing
environ directly.

Some environment variables are defined by POSIX.1 in the Single UNIX
Specification, whereas others are defined only if the XSI extensions are supported.
Figure 7.7 lists the environment variables defined by the Single UNIX Specification and
also notes which implementations support the variables. Any environment variable
defined by POSIX.1 is marked with e; otherwise, it is an XSI extension. Many
additional implementation-dependent environment variables are used in the four
implementations described in this book. Note that ISO C doesn’t define any
environment variables.

. FreeBSD Linux Mac OS X Solaris -

Variable |POSIX.1 521 2422 103 9 Description
COLUMNS e |terminal width
DATEMSK XSI . e getdate(3) template file pathname
HOME ¢ |home directory
LANG * |name of locale
LC_ALL e name of locale
LC_COLLATE s |name of locale for collation
LC_CTYPE ¢ |name of locale for character classification
LC_MESSAGES o . . . e |name of locale for messages
LC_MONETARY ¢ |name of locale for monetary editing
LC_NUMERIC e Iname of locale for numeric editing
LC_TIME * |name of locale for date/time formatting
LINES . . d . ¢ |terminal height
LOGNAME ¢ |login name
MSGVERB XSl . ¢ |fmtmsg(3) message components to process
NLSPATH XSI . . . s |sequence of templates for message catalogs
PATH o |list of path prefixes to search for executable file
PWD e |absolute pathname of current working directory
SHELL N . . . ¢ [name of user’s preferred shell
TERM e terminal type
TMPDIR . i . . e |pathname of directory for creating temporary files
TZ * [time zone information

Figure 7.7 Environment variables defined in the Single UNIX Specification

In addition to fetching the value of an environment variable, sometimes we may
want to set an environment variable. We may want to change the value of an existing
variable or add a new variable to the environment. (In the next chapter, we'll see that
we can affect the environment of only the current process and any child processes that
we invoke. We cannot affect the environment of the parent process, which is often a
shell. Nevertheless, it is still useful to be able to modify the environment list.)
Unfortunately, not all systems support this capability. Figure 7.8 shows the functions
that are supported by the various standards and implementations.

194 Process Environment Chapter 7

o 3 . 1
Function | ISOC POSIX.1 F’gf’;’lsD ;‘I‘z‘; Malcogs X 50‘3“5 |
getenv
putenv XSI . . - .
setenv . . ° .
unsetenv . . 3 *
clearenv .

Figure 7.8 Support for various environment list functions

clearenv is not part of the Single UNIX Specification. It is used to remove all entries from
the environment list.

The prototypes for the middle three functions listed in Figure 7.8 are

#include <stdlib.h>
int putenv(char *str);

int setenv(const char *nmame, const char *wvalue, int rewrite) ;

All return: 0 if OK, nonzero on error

|
S
int unsetenv(const char *name) ; J

The operation of these three functions is as follows.

(0 The putenv function takes a string of the form name=value and places it in the
environment list. If name already exists, its old definition is first removed.

* The setenv function sets name to value. If name already exists in the
environment, then (a) if rewrite is nonzero, the existing definition for name is first
removed; (b) if rewrite is 0, an existing definition for name is not removed, name is
not set to the new value, and no error occurs.

* The unsetenv function removes any definition of name. It is not an error if
such a definition does not exisD

Note the difference between putenv and setenv. Whereas setenv must allocate memory to
create the name=value string from its arguments, putenv is free to place the string passed to it
directly into the environment. Indeed, on Linux and Solaris, the putenv implementation
places the address of the string we pass to it directly into the environment list. In this case, it
would be an error to pass it a string allocated on the stack, since the memory would be reused
after we return from the current function.

It is interesting to examine how these functions must operate when modifying the
environment list. Recall Figure 7,6:Ghe environment list—the array of pointers to the
actual name=value strings—and the environment strings are typically stored at the top
of a process’s memory space, above the stack. Deleting a string is simple; we simply
find the pointer in the environment list and move all subsequent pointers down one.
But adding a string or modifying an existing string is more difficult. The space at the

Section 7.10 setjmp and longjmp Functions 195

7.10

top of the stack cannot be expanded, because it is often at the top of the address space of
the process and so can’t expand upward; it can’t be expanded downward, because all
the stack frames below it can’t be moved.

1. If we're modifying an existing name:

a. If the size of the new wvalue is less than or equal to the size of the existing
value, we can just copy the new string over the old string.

b. If the size of the new wvalue is larger than the old one, however, we must
malloc to obtain room for the new string, copy the new string to this area,
and then replace the old pointer in the environment list for name with the
pointer to this allocated area.

2. If we're adding a new name, it's more complicated. First, we have to call
malloc to allocate room for the name=value string and copy the string to this
area.

a. Then, if it’s the first time we’ve added a new name, we have to call malloc
to obtain room for a new list of pointers. We copy the old environment list
to this new area and store a pointer to the name=value string at the end of
this list of pointers. We also store a null pointer at the end of this list, of
course. Finally, we set environ to point to this new list of pointers. Note
from Figure 7.6 that if the original environment list was contained above the
top of the stack, as is common, then we have moved this list of pointers to
the heap. But most of the pointers in this list still point to name=value strings
above the top of the stack.

b. If this isn’t the first time we've added new strings to the environment list,
then we know that we've already allocated room for the list on the heap, so
we just call realloc to allocate room for one more pointer. The pointer to
the new name=value string is stored at the end of the list (on top of the
previous null pointer), followed by a null pointer)

setjmp and longjmp Functions

In C, we can’t goto a label that’s in another function. Instead, we must use the setjmp
and longjmp functions to perform this type of branching. As we'll see, these two
functions are useful for handling error conditions that occur in a deeply nested function
call.

Consider the skeleton in Figure 7.9.@t consists of a main loop that reads lines from
standard input and calls the function do_1ine to process each line. This function then
calls get_token to fetch the next token from the input line. The first token of a line is
assumed to be a command of some form, and a switch statement selects each
command. For the single command shown, the function cmd_add is called.)

The skeleton in Figure 7.9 is typical for programs that read commands, determine
the command type, and then call functions to process each command. Figure 7.10
shows what the stack could look like after cmd_add has been called.

Lndd

196

Process Environment

Chapter 7

#include "apue.h"
#define TOK_ADD 5

void do_line(char *);
void cmd_add (void) ;
int get_token(void) ;

int
main (void)

{

char line [MAXLINE] ;

while' (fgets(line, MAXLINE, stdin) != NULL)
do line(line);
exit (0) ;

}

char *tok ptr; /* global pointer for get_token() */

void
do_line(char *ptr) /* process one line of input */

{

int cmd ;

tok _ptr = ptr;

while ((cmd = get_token()) > 0) {
switch (cmd) { /* one case for each command */
case TOK_ADD:

cmd_add () ;
break;
}
}
}
void
cmd_add (veid)
{

int token;

token = get_token() ;
/* rest of processing for this command */

}
int
get_token(void)

{
}

/* fetch next token from line pointed to by tok_ptr */

Figure 7.9 Typical program skeleton for command processing

Section 7.10 setjmp and longjmp Functions 197

bottom of stack higher address

stack frame
formain

stack frame
fordo_line

stack frame

for cmd_add
direction of

stack growth

lower address

Figure 7.10 Stack frames after cmd_add has been called

Storage for the automatic variables is within the stack frame for each function.c_[[he
array line is in the stack frame for main, the integer cmd is in the stack frame for
do_line, and the integer token is in the stack frame for cmd_add.)

As we've said, this type of arrangement of the stack is typical, but not required.
Stacks do not have to grow toward lower memory addresses. On systems that don’t
have built-in hardware support for stacks, a C implementation might use a linked list
for its stack frames.

The coding problem that’s often encountered with programs like the one shown in
Figure 7.9 is how to handle nonfatal errors. For example,if the cmd_add function
encounters an error—say, an invalid number—it might want to print an error, ignore
the rest of the input line, and return to the main function to read the next input line.
But when we're deeply nested numerous levels down from the main function, this is
difficult to do in C. (In this example, in the cmd_add function, we're only two levels
down from main, but it’s not uncommon to be five or more levels down from where we
want to return to.) It becomes messy if we have to code each function with a special
return value that tells it to return one level.)

The solution to this problem is to use a nonlocal goto: the setjmp and longjmp
functions. The adjective nonlocal is because we're not doing a normal C goto
statement within a function; instead, we're branching back through the call frames to a
function that is in the call path of the current function.

#include <setjmp.h>
int setjmp(jmp buf env);

Returns: 0 if called directly, nonzero if returning from a call to longjmp

.

void longjmp (jmp buf env, int wal);

198 Process Environment Chapter 7

We call setjmp from the location that we want to return to, which in this example
15 in the main function. In this case,/set jmp returns 0 because we called it dlrectly) In
{the call to setjmp, the argument env is of the special type jmp_buf. This data type is
some form of array that is capable of holding all the information required to restore the
status of the stack to the state when we call longjmp. Normally, the env variable is a
global variable/since we’ll need to reference it from another function.

“When we encounter an error—say, in the cmd_add function—we call longjmp
with two arguments. The first is the same env that we used in a call to set jmp, and the
second, val, is a nonzero value that becomes the return value from set jmp.) The reason
for the second argument is to allow us to have more than one longjmp for each
setjmp. For example, we could longjmp from cmd_add with a val of 1 and also call
longjmp from get_token with a val of 2. In the main function, the return value from
setjmp is either 1 or 2, and we can test this value, if we want, and determine whether
the longjmp was from cmd_add or get_token.

Let’s return to the example. Figure 7.11 shows both the main and cmd_add
functions. (The other two functions, do_1line and get_token, haven’t changed.)

#include. "apue.h"
#include <setjmp.h>

#define TOK_ADD 5
jmp_buf jmpbuffer;
int

main (void)

{

char line [MAXLINE] ;
if (setjmp(jmpbuffer) != 0)
printf ("error") ;
while (fgets(line, MAXLINE, stdin) != NULL)
do_line(line);
exit (0);
}
void

cmd_add (void)

{

int token;

token = get_token();

if (token < 0) /* an error has occurred */
longjmp (jmpbuffer, 1);

/* rest of processing for this command */

Figure 7.11 Example of set jmp and longjmp

Section 7.10 setjmp and longjmp Functions 199

L/ When main is executed, we call set jmp, which records whatever information it needs
to in the variable jmpbuffer and returns 0. We then call do_line, which calls
cmd_add, and assume that an error of some form is detected. Before the call to
longjmp in cmd_add, the stack looks like that in Figure 7.10. But longjmp causes the
stack to be “unwound” back to the main function, throwing away the stack frames for
cmd_add and do_1line (Figure 7.12). Calling longjmp causes the setjmp in main to
return, but this time it returns with a value ofglythe second argument for longjmp).

bottom of stack higher address

stack frame
formain

direction of l

stack growth
lower address

Figure 7.12 Stack frame after 1ongjmp has been called

Automatic, Register, and Volatile Variables

We've seen what the stack looks like after calling 1ongjmp. The next question is, “what
are the states of the automatic variables and register variables in the main function?”
When main is returned to by the longjmp, do these variables have values
corresponding to when the setjmp was previously called (i.e., are their values rolled
back), or are their values left alone so that their values are whatever they were when
do_line was called (which caused cmd_add to be called, which caused longjmp to be
called)? Unfortunately, the answer is “it depends.” Most implementations do not try to
roll back these automatic variables and register variables, but the standards say only
that their values are indeterminate. /If you have an automatic variable that you don't
want rolled back, define it with the volatile attribute, Variables that are declared
global or static are left alone when longjmp is executed.

Example

The program in Figure 7.13 demonstrates the different behavior that can be seen with
automatic, global, register, static, and volatile variables after calling 1longjmp.

200 Process Environment Chapter 7

#include "apue.h"
#include <setjmp.h>

static void f1(int, int, int, int);
static void £2(void);

static jmp_buf jmpbuffer;
static int globval;
int

main(void)

{

int autoval;
register int regival;
volatile int volaval;
static int statval;

globval = 1; autoval = 2; regival = 3; volaval = 4; statval = 5;

if (setjmp(jmpbuffer) != 0) ({
printf ("after longjmp:\n");
printf ("globval = %d, autoval = %d, regival = %d,"
" volaval = %d, statval = %d\n",
globval, autoval, regival, volaval, statval);

exit(0);
}
/*
* Change variables after setjmp, but before longjmp.
*/
globval = 95; autoval = 96; regival = 97; volaval = 98;
statval = 99;

f1(autoval, regival, volaval, statval); /* never returns */
exit (0);

}

static void
f1(int i, int j, int k, int 1)
{
printf ("in £1():\n");
printf ("globval = %d, autoval = %d, regival = %d,"
" volaval = %d, statval = %d\n", globval, i, j, k, 1);
£2();

}

static void
£2 (void)

{
}

longjmp (jmpbuffer, 1);

Figure 7.13 Effect of 1ongjmp on various types of variables

Section 7.10 setjmp and longjmp Functions 201

If we compile and test the program in Figure 7.13, with and without compiler
optimizations, the results are different:

$ cc testjmp.c compile without any optimization
$./a.out
in £1():

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
after longjmp:

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99
$ cc -0 testjmp.c compile with full optimization

$./a.out

in £1():

globval = 95, autoval = 96, regival = 97, volaval = 98, statval = 99

after longjmp:
globval = 95, autoval = 2, regival = 3, volaval = 98, statval = 99

@ote that the optimizations don’t affect the global, static, and volatile variables; their
values after the longjmp are the last values that they assume@ The setjmp(3) manual
page on one system states that variables stored in memory will have values as of the
time of the longjmp, whereas variables in the CPU and floating-point registers are
restored to their values when set jmp was called. This is indeed what we see when we
run the program in Figure 7.13. Without optimization, all five variables are stored in
memory (the register hint is ignored for regival). When we enable optimization,
both autoval and regival go into registers, even though the former wasn't declared
register, and the volatile variable stays in memory. The thing to realize with this
example is that you must use the volatile attribute if you're writing portable code
that uses nonlocal jumps. Anything else can change from one system to the next.

Some printf format strings in Figure 7.13 are longer than will fit comfortably for
display in a programming text. Instead of making multiple calls to printf, we rely on
ISO C's string concatenation feature, where the sequence

"stringl" "string2"
is equivalent to

"stringlstring2" g

We'll return to these two functions, setjmp and longjmp, in Chapter 10 when we
discuss signal handlers and their signal versions: sigsetjmp and siglongjmp.

Potential Problem with Automatic Variables

Having looked at the way stack frames are usually handled, it is worth looking at a
potential error in dealing with automatic variables. The basic rule is that an automatic
variable can never be referenced after the function that declared it returns. There are
numerous warnings about this throughout the UNIX System manuals.

Figure 7.14 shows a function called open_data that opens a standard I/O stream
and sets the buffering for the stream.

202 Process Environment Chapter 7

#include <stdio.h>
#define DATAFILE "datafile"
FILE *
open_data (void)
{
FILE *fp;
char databuf [BUFSIZ]; /* setvbuf makes this the stdio buffer */
if ((fp = fopen(DATAFILE, "r")) == NULL)
return (NULL) ;
if (setvbuf (fp, databuf, _IOLBF, BUFSIZ) != 0)
return (NULL) ;
return (fp) ; /* error */

Figure 7.14 Incorrect usage of an automatic variable

The problem is that when open_data returns, the space it used on the stack will be
used by the stack frame for the next function that is called. But the standard I/0O library
will still be using that portion of memory for its stream buffer. Chaos is sure to result.
To correct this problem, the array databuf needs to be allocated from global memory,
either statically (static or extern) or dynamically (one of the alloc functions).

711 getrlimit and setrlimit Functions

Every process has a set of resource limits, some of which can be queried and changed by
the getrlimit and setrlimit functions.

#include <sys/resource.h>
int getrlimit (int resource, struct rlimit *riptr);

int setrlimit (int resource, const struct rlimit *riptr);

Both return: 0 if OK, nonzero on error

These two functions are defined as XSI extensions in the Single UNIX Specification. The
resource limits for a process are normally established by process 0 when the system is
initialized and then inherited by each successive process. Each implementation has its own
way of tuning the various limits.

éf_Each call to these two functions specifies a single resource and a pointer to the
following structure:

struct rlimit {
rlim t rlim cur; /* soft limit: current limit */
rlim t rlim max; /* hard limit: maximum value for rlim cur */

Vi

Section 7.11

getrlimit and setrlimit Functions 203

Three rules govern the changing of the resource limits.

A process can change its soft limit to a value less than or equal to its hard limit.

2. A process can lower its hard limit to a value greater than or equal to its soft
limit. This lowering of the hard limit is irreversible for normal users.

3. Only a superuser process can raise a hard limiE./

An infinite limit is specified by the constant RLIM_INFINITY.
The resource argument takes on one of.the following values. Figure 7.15 shows
which limits are defined by the Single UNIX Specification and supported by each

implementation.

RLIMIT_AS

RLIMIT_CORE
RLIMIT_CPU
RLIMIT_DATA
RLIMIT_FSIZE

RLIMIT_LOCKS

RLIMIT_ MEMLOCK

RLIMIT_ NOFILE
RLIMIT_NPROC
RLIMIT _RSS

RLIMIT SBSIZE

RLIMIT_STACK
RLIMIT_ VMEM

The maximum size in bytes of a process’s total available memory.
This affects the sbrk function (Section 1.11) and the mmap
function (Section 14.9).

The maximum size in bytes of a core file. A limit of 0 prevents the
creation of a core file.

The maximum amount of CPU time in seconds. When the soft
limit is exceeded, the STGXCPU signal is sent to the process.

The maximum size in bytes of the data segment: the sum of the
initialized data, uninitialized data, and heap from Figure 7.6.

The maximum size in bytes of a file that may be created. When
the soft limit is exceeded, the process is sent the SIGXFSZ signal.

The maximum number of file locks a process can hold. (This
number also includes file leases, a Linux-specific feature. See the
Linux fcnt1(2) manual page for more information.)

The maximum amount of memory in bytes that a process can lock
into memory using mlock(2).

The maximum number of open files per process. Changing this
limit affects the value returned by the sysconf function for its
_SC_OPEN_MAX argument (Section 2.5.4). See Figure 2.16 also.

The maximum number of child processes per real user ID.
Changing this limit affects the value returned for
_SC_CHILD_MAX by the sysconf function (Section 2.5.4).

Maximum resident set size (RSS) in bytes. If available physical
memory is low, the kernel takes memory from processes that
exceed their RSS.

The maximum size in bytes of socket buffers that a user can
consume at any given time.

The maximum size in bytes of the stack. See Figure 7.6.
This is a synonym for RLIMIT_AS.

204 Process Environment

Chapter 7

Limit

XSI

FreeBSD
521

Linux
2422

MacOS X
10.3

Solaris
9

RLIMIT_AS
RLIMIT_CORE
RLIMIT CPU
RLIMIT_DATA
RLIMIT_FSIZE
RLIMIT_ LOCKS
RLIMIT_ MEMLOCK
RLIMIT _NOFILE
RLIMIT_ NPROC
RLIMIT_RSS
RLIMIT_SBSIZE
RLIMIT_STACK
RLIMIT_ VMEM

* o o o

e & & o & ¢ o

e o o o

Figure 7.15 Support for resource limits

!'/The resource limits affect the calling process and are inherited by any of its children.
This means that the setting of resource limits needs to be built into the shells to affect all
our future processes. Indeed, the Bourne shell, the GNU Bourne-again shell, and the
Korn shell have the built-in ulimit command, and the C shell has the built-in 1imit
command. (The umask and chdir functions also have to be handled as shell built-ins.)

Example

The program in Figure 7.16 prints out the current soft limit and hard limit for all the
resource limits supported on the system. To compile this program on all the various
implementations, we have conditionally included the resource names that differ. Note
also that we must use a different printf format on platforms that define r1im_t to be

an unsigned long long instead of an unsigned long.

#include "apue.h"

#if defined(BSD)
#include <sys/time.h>

#define FMT "%1011d

#else

#define FMT "%101d *

#endif

#include <sys/resource.h>
#define doit (name)

static void pr limits(char *,

int

main (void)

{

|| defined(MACOS)

pr_limits (#name, name)

int) ;

Section 7.11 getrlimit and setrlimit Functions 205

#ifdef RLIMIT_AS
doit (RLIMIT_AS) ;
#endif
doit (RLIMIT CORE) ;
doit (RLIMIT_CPU) ;
doit (RLIMIT_DATA) ;
doit (RLIMIT FSIZE);
#ifdef RLIMIT LOCKS
doit (RLIMIT LOCKS) ;
#endif
#ifdef RLIMIT_MEMLOCK
doit (RLIMIT_ MEMLOCK) ;
#endif
doit (RLIMIT NOFILE) ;
#ifdef RLIMIT_NPROC
doit (RLIMIT_NPROC) ;
#endif
#ifdef RLIMIT RSS
doit (RLIMIT_RSS);
#endif
#ifdef RLIMIT_SBSIZE
doit (RLIMIT_ SBSIZE);
#endif
doit (RLIMIT_STACK) ;
#ifdef RLIMIT_VMEM
doit (RLIMIT_VMEM) ;
#endif
exit (0) ;
}

static void
pr_limits(char *name, int resource)

{

struct rlimit limit;

if (getrlimit (resource, &limit) < 0)
err_sys("getrlimit error for %s", name) ;

printf ("%$-14s ", name);

if (limit.rlim cur == RLIM_INFINITY)
printf (" (infinite) ");

else
printf (FMT, limit.rlim cur);

if (limit.rlim max == RLIM_INFINITY)
printf (" (infinite)");

else
printf (FMT, limit.rlim_max);

putchar ({int) ‘\n’) ;

Figure 7.16 Print the current resource limits

206 Process Environment Chapter 7
Note that we’ve used the ISO C string-creation operator (#) in the doit macro, to
generate the string value for each resource name. When we say
doit (RLIMIT CORE) ;
the C preprocessor expands this into
pr_limits ("RLIMIT CORE", RLIMIT CORE) ;
Running this program under FreeBSD gives us the following:
$./a.out
RLIMIT_CORE (infinite) (infinite)
RLIMIT CPU (infinite) (infinite)
RLIMIT DATA 536870912 536870912
RLIMIT_ FSIZE (infinite) (infinite)
RLIMIT MEMLOCK (infinite) (infinite)
RLIMIT NOFILE 1735 1735
RLIMIT NPROC 867 867
RLIMIT RSS (infinite) (infinite)
RLIMIT SBSIZE (infinite) (infinite)
RLIMIT STACK 67108864 67108864
RLIMIT_VMEM (infinite) (infinite)
Solaris gives us the following results:
$./a.out
RLIMIT_AS (infinite) (infinite)
RLIMIT_CORE (infinite) (infinite)
RLIMIT CPU (infinite) (infinite)
RLIMIT_DATA (infinite) (infinite)
RLIMIT_FSIZE (infinite) (infinite)
RLIMIT NOFILE 256 65536
RLIMIT_STACK 8388608 (infinite)
RLIMIT VMEM (infinite) (infinite) C
Exercise 10.11 continues the discussion of resource limits, after we’ve covered signals.
7.12 Summary

Understanding the environment of a C program in a UNIX system’s environment is a
prerequisite to understanding the process control features of the UNIX System. In this
chapter, we’ve looked at how a process is started, how it can terminate, and how it's
passed an argument list and an environment. Although both are uninterpreted by the
kernel, it is the kernel that passes both from the caller of exec to the new process.

We've also examined the typical memory layout of a C program and how a process
can dynamically allocate and free memory. It is worthwhile to look in detail at the
functions available for manipulating the environment, since they involve memory
allocation. The functions setjmp and longjmp were presented, providing a way to
perform nonlocal branching within a process. We finished the chapter by describing the
resource limits that various implementations provide.

Chapter 7

Exercises 207

Exercises

7.1

7.2
7.3
7.4
_ 7.5
7.6
77
7.8
7.9

7.10

On an Intel x86 system under both FreeBSD and Linux, if we execute the program that
prints “hello, world” and do not call exit or return, the termination status of the
program, which we can examine with the shell, is 13. Why?

When is the output from the print s in Figure 7.3 actually output?

Is there any way for a function that is called by main to examine the command-line
arguments without (a) passing argc and argv as arguments from main to the function or
(b) having main copy argc and argv into global variables?

Some UNIX system implementations purposely arrange that, when a program is executed,
location 0 in the data segment is not accessible. Why?

Use the typedef facility of C to define a new data type Exitfunc for an exit handler.
Redo the prototype for atexit using this data type.

If we allocate an array of longs using calloc, is the array initialized to 07 If we allocate an
array of pointers using calloc, is the array initialized to null pointers?

In the output from the size command at the end of Section 7.6, why aren’t any sizes given
for the heap and the stack?

In Section 7.7, the two file sizes (475570 and 11410) don't equal the sums of their respective
text and data sizes. Why?

In Section 7.7, why is there such a difference in the size of the executable file when using
shared libraries for such a trivial program?

At the end of Section 7.10, we showed how a function can’t return a pointer to an automatic
variable. Is the following code correct?

int
f1(int val)

{

int *ptr;

if (val == 0) {

int val;
val = 5;
ptr = &val;

}

return (*ptr + 1);

8.1

8.2

Process Conftrol

Introduction

We now turn to the process control provided by the UNIX System. This includes the
creation of new processes, program execution, and process termination. We also look at
the various IDs that are the property of the process—real, effective, and saved; user and
group IDs—and how they re affected by the process control primitives. Interpreter files
and the system function are also covered. We conclude the chapter by looking at the
process accounting provided by most UNIX systems. This lets us look at the process
control functions from a different perspective.

Process Identifiers

Every process has a unique process ID, a non-negative integer. Because the process ID
is the only well-known identifier of a process that is always unique, it is often used as a
piece of other identifiers, to guarantee uniqueness. For example, applications
sometimes include the process ID as part of a filename in an attempt to generate unique
filenames.

Although unique, process IDs are reused. As processes terminate, their IDs become
candidates for reuse. Most UNIX systems implement algorithms to delay reuse,
however, so that newly created processes are assigned IDs different from those used by
processes that terminated recently. This prevents a new process from being mistaken
for the previous process to have used the same ID.

209

210 Process Control Chapter 8

There are some special processes, but the details differ from implementation to
implementation. Process ID 0 is usually the scheduler process and is often known as
the swapper. No program on disk corresponds to this process, which is part of the
kernel and is known as a system process. Process ID 1 is usually the init process and
is invoked by the kernel at the end of the bootstrap procedure. The program file for this
process was /etc/init in older versions of the UNIX System and is /sbin/init in
newer versions. This process is responsible for bringing up a UNIX system after the
kernel has been bootstrapped. init usually reads the system-dependent initialization
files—the /etc/rc* files or /etc/inittab and the files in /etc/init.d—and
brings the system to a certain state, such as multiuser. The init process never dies. It
is a normal user process, not a system process within the kernel, like the swapper,
although it does run with superuser privileges. Later in this chapter, we’ll see how
init becomes the parent process of any orphaned child process.

Each UNIX System implementation has its own set of kernel processes that provide
operating system services. For example, on some virtual memory implementations of
the UNIX System, process ID 2 is the pagedaemon. This process is responsible for
supporting the paging of the virtual memory system.

In addition to the process ID, there are other identifiers for every process. The
following functions return these identifiers.

#include <unistd.h>
pid t getpid(void);
Returns: process ID of calling process
pid_t getppid(void) ;
Returns: parent process ID of calling process
uid_t getuid(void);
Returns: real user ID of calling process
uid_t geteuid(void);
Returns: effective user IP of calling process
gid_t getgid(void) ;
Returns: real group ID of calling process

gid_t getegid(void);

Returns: effective group ID of calling process

Note that none of these functions has an error return. We'll return to the parent process
ID in the next section when we discuss the fork function. The real and effective user
and group IDs were discussed in Section 4.4.

Section 8.3 fork Function 211

8.3

fork Function

An existing process can create a new one by calling the fork function.

#include <unistd.h>

pid_t fork(void);

Returns: 0 in child, process ID of child in parent, -1 on error

The new process created by fork is called the child process. This function is called once
but returns twice. The only difference in the returns is that the return value in the child
is 0, whereas the return value in the parent is the process ID of the new child. The
reason the child’s process ID is returned to the parent is that a process can have more
than one child, and there is no function that allows a process to obtain the process IDs of
its children. The reason fork returns O to the child is that a process can have only a
single parent, and the child can always call getppid to obtain the process ID of its
parent. (Process ID 0 is reserved for use by the kernel, so it's not possible for 0 to be the
process ID of a child.)

Both the child and the parent continue executing with the instruction that follows
the call to fork. The child is a copy of the parent. For example, the child gets a copy of
the parent’s data space, heap, and stack. Note that this is a copy for the child; the parent
and the child do not share these portions of memory. The parent and the child share the
text segment (Section 7.6).

Current implementations don’t perform a complete copy of the parent’s data, stack,
and heap, since a fork is often followed by an exec. Instead, a technique called
copy-on-write (COW) is used. These regions are shared by the parent and the child and
have their protection changed by the kernel to read-only. If either process tries to
modify these regions, the kernel then makes a copy of that piece of memory only,
typically a “page” in a virtual memory system. Section 9.2 of Bach [1986] and Sections
5.6 and 5.7 of McKusick et al. [1996] provide more detail on this feature.

Variations of the fork function are provided by some platforms. All four platforms discussed
in this book support the vfork(2) variant discussed in the next section.

Linux 2.4.22 also provides new process creation through the clone(2) system call. This is a
generalized form of fork that allows the caller to control what is shared between parent and
child.

FreeBSD 5.2.1 provides the rfork(2) system call, which is similar to the Linux clone system
call. The rfork call is derived from the Plan 9 operating system (Pike et al. {1995]).

Solaris 9 provides two threads libraries: one for POSIX threads (pthreads) and one for Solaris
threads. The behavior of fork differs between the two thread libraries. For POSIX threads,
fork creates a process containing only the calling thread, but for Solaris threads, fork creates
a process containing copies of all threads from the process of the calling thread. To provide
similar semantics as POSIX threads, Solaris provides the fork1 function, which can be used to
create a process that duplicates only the calling thread, regardless of the thread library used.
Threads are discussed in detail in Chapters 11 and 12.

212

Process Control Chapter 8

Example

The program in Figure 8.1 demonstrates the fork function, showing how changes to
variables in a child process do not affect the value of the variables in the parent process.

#include "apue.h"

int glob = 6; /* external variable in initialized data */
char buf[] = "a write to stdout\n";
int

main (void)

{

int var; /* automatic variable on the stack */
pid_t pid;

var = 88;

if (write (STDOUT_FILENO, buf, sizeof (buf)-1) != sizeof (buf)-1)
err_sys("write error");

printf ("before fork\n"); /* we don’t flush stdout */

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) { /* child */
glob++; /* modify variables */
var++; ’
} else {
sleep(2); /* parent */
}
printf ("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);
exit (0);

Figure 8.1 Example of fork function

If we execute this program, we get

$./a.out
a write to stdout
before fork
pid = 430, glob
pid = 429, glob = 6, var
$./a.out > temp.out

$ cat temp.out

a write to stdout

before fork

pid = 432, glob
before fork

pid = 431, glob

7, var = 89 child’s variables were changed
88 parent’s copy was not changed

i

"

7, var = 89

6, var = 88

In general, we never know whether the child starts executing before the parent or vice
versa. This depends on the scheduling algorithm used by the kernel. If it’s required
that the child and parent synchronize, some form of interprocess communication is

Section 8.3 fork Function 213

required. In the program shown in Figure 8.1, we simply have the parent put itselt to
sleep for 2 seconds, to let the child execute. There is no guarantee that this is adequate,
and we talk about this and other types of synchronization in Section 8.9 when we
discuss race conditions. In Section 10.16, we show how to use signals to synchronize a
parent and a child after a fork.

When we write to standard output, we subtract 1 from the size of buf to avoid
writing the terminating null byte. Although strlen will calculate the length of a string
not including the terminating null byte, sizeof calculates the size of the buffer, which
does include the terminating null byte. Another difference is that using strlen
requires a function call, whereas sizeof calculates the buffer length at compile time, as
the buffer is initialized with a known string, and its size is fixed.

Note the interaction of fork with the /0 functions in the program in Figure 8.1.
Recall from Chapter 3 that the write function is not buffered. Because write is called
before the fork, its data is written once to standard output. The standard /0O library
however, is buffered. Recall from Section 5.12 that standard output is line buffered if it’s
connected to a terminal device; otherwise, it's fully buffered. When we run the
program interactively, we get only a single copy of the printt line, because the
standard output buffer is fiushed by the newline. But when we redirect standard
output to a file, we get two copies of the printf line. In this second case, the printf
hefore the fork is called once, but the line remains in the buffer when fork is called.
This buffer is then copied into the child when the parent’s data space is copied to the
child. Both the parent and the child now have a standard 1/0 buffer with this line in it.
The second printf£, right before the exit, just appends its data to the existing butter.
When each process terminates, its copy of the buffer is finally flushed. O

File Sharing

When we redirect the standard output of the parent from the program in Figure 8.1, the
child’s standard output is also redirected. Indeed, one characteristic of £ork is that all
file descriptors that are open in the parent are duplicated in the child. We say
“duplicated” because it’s as if the dup function had been called for each descriptor. The
parent and the child share a file table entry for every open descriptor (recall Figure 3.8).

Consider a process that has three different files opened for standard input, standard
output, and standard error. On return from fork, we have the arrangement shown in
Figure 8.2.

It is important that the parent and the child share the same file offset. Consider a
process that forks a child, then waits for the child to complete. Assume that both
processes write to standard output as part of their normal processing. If the parent has
its standard output redirected (by a shell, perhaps) it is essential that the parent’s file
offset be updated by the child when the child writes to standard output. In this case,
the child can write to standard output while the parent is waiting for it; on completion
of the child, the parent can continue writing to standard output, knowing that its output
will be appended to whatever the child wrote. If the parent and the child did not share
the same file offset, this type of interaction would be more difficult to accomplish and
would require explicit actions by the parent.

214 Process Control Chapter 8

parent process table entry file table v-node table
file status flags v-node
: information
current file offset -
i-node
fd file v-node pointer — information
flags pointer _— F - m—— - - =
fd 0: current file size
fd 1:
fd 2: [S
file status flags
current file offset v-node
- information
v-node pointer — :
i-node
information
child process table entry current file size

file status flags

current file offset

ﬂgdgs pofnl;!neter
£d 0: v-node pointer I v-node.
fd 1: information
a2 i-node
. information
current file size

Figure 8.2 Sharing of open files between parent and child after fork

If both parent and child write to the same descriptor, without any form of
synchronization, such as having the parent wait for the child, their output will be
intermixed (assuming it’s a descriptor that was open before the fork). Although this is
possible—we saw it in Figure 8.2—it’s not the normal mode of operation.

There are two normal cases for handling the descriptors after a fork.

1. The parent waits for the child to complete. In this case, the parent does not need
to do anything with its descriptors. When the child terminates, any of the
shared descriptors that the child read from or wrote to will have their file offsets
updated accordingly.

2. Both the parent and the child go their own ways. Here, after the fork, the
parent closes the descriptors that it doesn’t need, and the child does the same
thing. This way, neither interferes with the other’s open descriptors. This
scenario is often the case with network servers.

Besides the open files, there are numerous other properties of the parent that are
inherited by the child:

* Real user ID, real group ID, effective user ID, effective group ID
* Supplementary group IDs

Section 8.3

fork Function 215

Process group 1D

Session ID

Controlling terminal

The set-user-ID and set-group-ID flags
Current working directory

Root directory

File mode creation mask

Signal mask and dispositions

The close-on-exec flag for any open file descriptors
Environment

Attached shared memory segments
Memory mappings

Resource limits

The differences between the parent and child are

The return value from fork
The process IDs are different

The two processes have different parent process IDs: the parent process ID of the
child is the parent; the parent process ID of the parent doesn’t change

The child’s tms_utime, tms_stime, tms_cutime, and tms_cstime values
are set to 0

File locks set by the parent are not inherited by the child
Pending alarms are cleared for the child

The set of pending signals for the child is set to the empty set

Many of these features haven't been discussed yet—we’ll cover them in later chapters.
The two main reasons for fork to fail are (a) if too many processes are already in

the system, which usually means that something else is wrong, or (b) if the total number

of processes for this real user ID exceeds the system’s limit. Recall from Figure 2.10 that

CHILD_ MAX specifies the maximum number of simultaneous processes per real user ID.
There are two uses for fork:

1.

When a process wants to duplicate itself so that the parent and child can each
execute different sections of code at the same time. This is common for network
servers—the parent waits for a service request from a client. When the request
arrives, the parent calls fork and lets the child handle the request. The parent
goes back to waiting for the next service request to arrive.

When a process wants to execute a different program. This is common for
shells. In this case, the child does an exec (which we describe in Section 8.10)
right after it returns from the fork.

216

Process Control Chapter 8

8.4

Some operating systems combine the operations from step 2—a fork followed by an
exec—into a single operation called a spawn. The UNIX System separates the two, as
there are numerous cases where it is useful to fork without doing an exec. Also,
separating the two allows the child to change the per-process attributes between the
fork and the exec, such as /O redirection, user ID, signal disposition, and so on.
We'll see numerous examples of this in Chapter 15.

The Single UNIX Specification does include spawn interfaces in the advanced real-time option
group. These interfaces are not intended to be replacements for fork and exec, however.
They are intended to support systems that have difficulty implementing fork efficiently,
especially systems without hardware support for memory management.

vfork Function

The function vfork has the same calling sequence and same return values as fork.
But the semantics of the two functions differ.

The vEork function originated with 2.9BSD. Some consider the function a blemish, but all the
platforms covered in this book support it. In fact, the BSD developers removed it from the
44BSD release. but all the open source BSD distributions that derive from 4.4BSD added
support for it back into their own releases. The vfork function is marked as an obsolete
interface in Version 3 of the Single UNIX Specification.

The vfork function is intended to create a new process when the purpose of the
new process is to exec a new program (step 2 at the end of the previous section). The
bare-bones shell in the program from Figure 1.7 is also an example of this type of
program. The vfork function creates the new process, just like fork, without copying
the address space of the parent into the child, as the child won’t reference that address
space; the child simply calls exec (or exit) right after the vfork. Instead, while the
child is running and until it calls either exec or exit, the child runs in the address
space of the parent. This optimization provides an efficiency gain on some paged
virtual-memory implementations of the UNIX System. (As we mentioned in the
previous section, implementations use copy-on-write to improve the efficiency of a
fork followed by an exec, but no copying is still faster than some copying.)

Another difference between the two functions is that vfork guarantees that the
child runs first, until the child calls exec or exit. When the child calls either of these
functions, the parent resumes. (This can lead to deadlock if the child depends on
further actions of the parent before calling either of these two functions.)

Example

The program in Figure 8.3 is a modified version of the program from Figure 8.1. We've
replaced the call to fork with vfork and removed the write to standard output.
Also, we don’t need to have the parent call sleep, as we're guaranteed that it is put to
sleep by the kernel until the child calls either exec or exit.

Section 8.4 ' vfork Function 217

#include "apue.h"

int glob = 6; /* external variable in initialized data */
int

main (void)

{

int var; /* automatic variable on the stack */
pid t pid;

var = 88;
printf ("before viork\n") ; /* we don’t flush stdio */
if ((pid = vfork()) < 0) {

err_sys("vfork error"};

} else if (pid == 0) { /* child */
glob++; /* modify parent’s variables */
var++;
_exit(0); /* child terminates */
}
/*
* Parent continues here.
*/
printf ("pid = %d, glob = %d, var = %d\n", getpid (), glob, var);
exit (0);

Figure 8.3 Example of vfork function

Running this program gives us

$./a.out
before vfork
pid = 29039, glob = 7, var = 89

Here, the incrementing of the variables done by the child changes the values in the
parent. Because the child runs in the address space of the parent, this doesn’t surprise
us. This behavior, however, differs from fork.

Note in Figure 8.3 that we call _exit instead of exit. As we described in
Section 7.3, _exit does not perform any flushing of standard 1/0 buffers. If we call
exit instead, the results are indeterminate. Depending on the implementation of the
standard 1/O library, we might see no difference in the output, or we might find that the
output from the parent’s printf has disappeared.

If the child calls exit, the implementation flushes the standard 1/0 streams. If this
is the only action taken by the library, then we will see no difference with the output
generated if the child called _exit. If the implementation also closes the standard 1/0
streams, however, the memory representing the FILE object for the standard output
will be cleared out. Because the child is borrowing the parent’s address space, when the
parent resumes and calls printf, no output will appear and printf will return —1.
Note that the parent’s STDOUT_FILENO is still valid, as the child gets a copy of the
parent’s file descriptor array (refer back to Figure 8.2).

218

Process Control Chapter 8

8.5

Most modern implementations of exit will not bother to close the streams. Because the
process is about to exit, the kernel will close all the file descriptors open in the process.

Closing them in the library simply adds overhead without any benefit. 0

Section 5.6 of McKusick et al. [1996] contains additional information on the
implementation issues of fork and vfork. Exercises 8.1 and 8.2 continue the
discussion of vfork.

exit Functions

As we described in Section 7.3, a process can terminate normally in five ways:

1.

Executing a return from the main function. As we saw in Section 7.3, this is
equivalent to calling exit.

Calling the exit function. This function is defined by ISO C and includes the
calling of all exit handlers that have been registered by calling atexit and
closing all standard 1/O streams. Because ISO C does not deal with file
descriptors, multiple processes (parents and children), and job control, the
definition of this function is incomplete for a UNIX system.

Calling the _exit or _Exit function. ISO C defines Exit to provide a way
for a process to terminate without running exit handlers or signal handlers.
Whether or not standard 1/O streams are flushed depends on the
implementation. On UNIX systems, Exit and exit are synonymous and do
not flush standard 1/O streams. The _exit function is called by exit and
handles the UNIX system-specific details; _exit is specified by POSIX.1.

In most UNIX system implementations, exit(3) is a function in the standard C
library, whereas _exit(2) is a system call.

Executing a return from the start routine of the last thread in the process. The
return value of the thread is not used as the return value of the process,
however. When the last thread returns from its start routine, the process exits
with a termination status of 0.

Calling the pthread_exit function from the last thread in the process. As
with the previous case, the exit status of the process in this situation is always 0,
regardless of the argument passed to pthread_exit. We'll say more about
pthread_exit in Section 11.5.

The three forms of abnormal termination are as follows:

1.

2.

Calling abort. This is a special case of the next item, as it generates the
SIGABRT signal.
When the process receives certain signals. (We describe signals in more detail in

Chapter 10). The signal can be generated by the process itself—for example, by
calling the abort function—by some other process, or by the kernel. Examples

Section 8.5 exit Functions 219

of signals generated by the kernel include the process referencing a memory
location not within its address space or trying to divide by 0.

3. The last thread responds to a cancellation request. By default, cancellation
occurs in a deferred manner: one thread requests that another be canceled, and
sometime later, the target thread terminates. We discuss cancellation requests in
detail in Sections 11.5and 12.7.

Regardless of how a process terminates, the same code in the kernel is eventually
executed. This kernel code closes all the open descriptors for the process, releases the
memory that it was using, and the like.

For any of the preceding cases, we want the terminating process to be able to notify
its parent how it terminated. For the three exit functions (exit, _exit, and _Exit),
this is done by passing an exit status as the argument to the function. In the case of an
abnormal termination, however, the kernel, not the process, generates a termination
status to indicate the reason for the abnormal termination. In any case, the parent of the
process can obtain the termination status from either the wait or the waitpid function
(described in the next section).

Note that we differentiate between the exit status, which is the argument to one of
the three exit functions or the return value from main, and the termination status. The
exit status is converted into a termination status by the kernel when _exit is finally
called (recall Figure 7.2). Figure 8.4 describes the various ways the parent can examine
the termination status of a child. If the child terminated normally, the parent can obtain
the exit status of the child.

When we described the fork function, it was obvious that the child has a parent
process after the call to fork. Now we're talking about returning a termination status
to the parent. But what happens if the parent terminates before the child? The answer
is that the init process becomes the parent process of any process whose parent
terminates. We say that the process has been inherited by init. What normally
happens is that whenever a process terminates, the kernel goes through all active
processes to see whether the terminating process is the parent of any process that still
exists. If so, the parent process ID of the surviving process is changed to be 1 (the
process ID of init). This way, we're guaranteed that every process has a parent.

Another condition we have to worry about is when a child terminates before its
parent. If the child completely disappeared, the parent wouldn’t be able to fetch its
termination status when and if the parent were finally ready to check if the child had
terminated. The kernel keeps a small amount of information for every terminating
process, so that the information is available when the parent of the terminating process
calls wait or waitpid. Minimally, this information consists of the process ID, the
termination status of the process, and the amount of CPU time taken by the process.
The kernel can discard all the memory used by the process and close its open files. In
UNIX System terminology, a process that has terminated, but whose parent has not yet
waited for it, is called a zombie. The ps(1) command prints the state of & zombie process
as Z. If we write a long-running program that forks many child processes, they
become zombies unless we wait for them and fetch their termination status.

Some systems provide ways to prevent the creation of zombies, as we describe in Section 10.7.

220

Process Control Chapter 8

8.6

The final condition to consider is this: what happens when a process that has been
inherited by init terminates? Does it become a zombie? The answer is “no,” because
init is written so that whenever one of its children terminates, init calls one of the
wait functions to fetch the termination status. By doing this, init prevents the system
from being clogged by zombies. When we say “one of init’s children,” we mean
either a process that init generates directly (such as getty, which we describe in
Section 9.2) or a process whose parent has terminated and has been subsequently
inherited by init.

wait and waitpid Functions

When a process terminates, either normally or abnormally, the kernel notifies the parent
by sending the SIGCHLD signal to the parent. Because the termination of a child is an
asynchronous event—it can happen at any time while the parent is running—this
signal is the asynchronous notification from the kernel to the parent. The parent can
choose to ignore this signal, or it can provide a function that is called when the signal
occurs: a signal handler. The default action for this signal is to be ignored. We describe
these options in Chapter 10. For now, we need to be aware that a process that calls
wait or waitpid can

e Block, if all of its childreniare still running

* Return immediately with the termination status of a child, if a child has
terminated and is waiting for its termination status to be fetched

* Return immediately with an error, if it doesn’t have any child processes

If the process is calling wait because it reccived the SIGCHLD signal, we expect wait to
return immediately. But if we call it at any random point in time, it can block.

#include <sys/wait.h>
| pid_t wait(int *statloc) ; |
pid_t waitpid(pid_t pid, int =statloc, int options) ; ‘

Both return: process ID if OK, 0 (see later), or -1 on error

The differences between these two functions are as follows.

* The wait function can block the caller until a child process terminates, whereas
waitpid has an option that prevents it from blocking.

* The waitpid function doesn’t wait for the child that terminates first; it has a
number of options that control which process it waits for.

If a child has already terminated and is a zombie, wait returns immediately with that
child’s status. Otherwise, it blocks the caller until a child terminates. If the caller blocks
and has multiple children, wait returns when one terminates. We can always tell
which child terminated, because the process ID is returned by the function.

Section 8.6 wait and waitpid Functions 221

For both functions, the argument statloc is a pointer to an integer. If this argument is
not a null pointer, the termination status of the terminated process is stored in the
location pointed to by the argument. If we don’t care about the termination status, we
simply pass a null pointer as this argument.

Traditionally, the integer status that these two functions return has been defined by
the implementation, with certain bits indicating the exit status (for a normal return),
other bits indicating the signal number (for an abnormal return), one bit to indicate
whether a core file was generated, and so on. POSIX.1 specifies that the termination
status is to be looked at using various macros that are defined in <sys/wait .h>. Four
mutually exclusive macros tell us how the process terminated, and they all begin with
WIF. Based on which of these four macros is true, other macros are used to obtain the
exit status, signal number, and the like. The four mutually-exclusive macros are shown
in Figure 8.4.

Macro Description

WIFEXITED (status) True if status was returned for a child that terminated normally. In this
case, we can execute

WEXITSTATUS (status}

to fetch the low-order 8 bits of the argument that the child passed to
exit, exit,or _BExit.

WIFSIGNALED (stafus) True if status was returned for a child that terminated abnormally, by
receipt of a signal that it didn’t catch. In this case, we can execute

WTERMSIG (status)
to fetch the signal number that caused the termination.

Additionally, some implementations (but not the Single UNIX
Specification) define the macro

WCOREDUMP (status)

that returns true if a core file of the terminated process was generated.

WIFSTOPPED (status) True if status was returned for a child that is currently stopped. In this
case, we can execute

WSTOPSIG (status)

to fetch the signal number that caused the child to stop.

| WIFCONTINUED (status) True if status was returned for a child that has been continued after a a
\ job control stop (XSI extension to POSIX.1; wai tpidonly).

Figure 8.4 Macros to examine the termination status returned by wait and waitpid

We'll discuss how a process can be stopped in Section 9.8 when we discuss job control.

Example

The function pr_exit in Figure 8.5 uses the macros from Figure 8.4 to print a
description of the termination status. We'll call this function from numerous programs
in the text. Note that this function handles the WCOREDUMP macro, if it is defined.

222

Process Control Chapter 8

#include "apue.h"
#include <sys/wait.h>

void
pr_exit (int status)
{
if (WIFEXITED (status))
printf("normal termination, exit status = %d\n",
WEXITSTATUS (status)) ;
else if (WIFSIGNALED (status))
printf ("abnormal termination, signal number = %d%s\n",
WTERMSIG (status),
#ifdef WCOREDUMP
WCOREDUMP (status) ? " (core file generated)" : "");
#else
"y
#endif
else if (WIFSTOPPED(status))
printf("child stopped, signal number = %d\n",
WSTOPSIG(status)) ;

Figure 8.5 Print a description of the exit status

FreeBSD 5.2.1, Linux 2.4.22, Mac OS X 10.3, and Solaris 9 all support the WCOREDUMP macro.

The program shown in Figure 8.6 calls the pr_exit function, demonstrating the
various values for the termination status. If we run the program in Figure 8.6, we get

$./a.out

normal termination, exit status = 7

abnormal termination, signal number = 6 (core file generated)
abnormal termination, signal number = 8 (core file generated)

Unfortunately, there is no portable way to map the signal numbers from WTERMSIG into
descriptive names. (See Section 10.21 for one method.) We have to look at the
<signal.h> header to verify that SIGABRT has a value of 6 and that SIGFPE has a
value of 8. C

As we mentioned, if we have more than one child, wait returns on termination of
any of the children. What if we want to wait for a specific process to terminate
(assuming we know which process ID we want to wait for)? In older versions of the
UNIX System, we would have to call wait and compare the returned process ID with
the one we're interested in. If the terminated process wasn't the one we wanted, we
would have to save the process ID and termination status and call wait again. We
would need to continue doing this until the desired process terminated. The next time
we wanted to wait for a specific process, we would go through the list of already
terminated processes to see whether we had already waited for it, and if not, call wait

Section 8.6

wait and waitpid Functions 223

#include "apue.h"
#include <sys/wait.h>
int
main (void)
{

pid_t pid;

int status;

if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid == 0)
exit (7);

if (wait (&status) != pid)
err_sys("wait error");
pr_exit (status);

if ((pid = fork())} < 0)
err_sys("fork error");

else if (pid == 0)
abort () ;

if (wait (&status) != pid)
err_sys("wait error");
pr_exit (status);

if ((pid = fork()) < 0)
err_sys("fork error") ;
else if (pid == 0)
status /= 0;

if (wait (&status) != pid)
err_sys("wait error");
pr_exit (status);

exit (0) ;

/*

/*
/*

/*
/*

/*
/*

/*
/*

/*
/*

child */

wait for child */

and print its status */

child */
generates SIGABRT */

wait for child */

and print its status */

child */
divide by 0 generates SIGFPE */

wait for child */

and print its status */

Figure 8.6 Demonstrate various exit statuses

again. What we need is a function that waits for a specific process. This functionality
(and more) is provided by the POSIX.1 waitpid function.
The interpretation of the pid argument for waitpid depends on its value:

Waits for any child process. In this respect, waitpid is equivalent

Waits for the child whose process ID equals pid.
Waits for any child whose process group ID equals that of the

calling process. (We discuss process groups in Section 9.4.)

pid == -1
towait.
pid > 0
pid == 0
pid < -1

value of pid.

Waits for any child whose process group ID equals the absolute

224 Process Control Chapter 8

The waitpid function returns the process ID of the child that terminated and stores the
child’s termination status in the memory location pointed to by statloc. With wait, the
only real error is if the calling process has no children. (Another error return is possible,
in case the function call is interrupted by a signal. We'll discuss this in Chapter 10.)
With waitpid, however, it’s also possible to get an error if the specified process or
process group does not exist or is not a child of the calling process.

The options argument lets us further control the operation of waitpid. This
argument is either 0 or is constructed from the bitwise OR of the constants in Figure 8.7.

Solaris supports one additional, but nonstandard, option constant. WNOWAIT has the system
keep the process whose termination status is returned by waitpid in a wait state, so that it
may be waited for again.

Constant Description

WCONTINUED | If the implementation supports job control, the status of any child
specified by pid that has been continued after being stopped, but
whose status has not yet been reported, is returned (XSI extension to
POSIX.1).

WNOHANG The waitpid function will not block if a child specified by pid is not
immediately available. In this case, the return value is 0.

WUNTRACED If the implementation supports job control, the status of any child
specified by pid that has stopped, and whose status has not been
reported since it has stopped, is returned. The WIFSTOPPED macro
determines whether the return value corresponds to a stopped child
process.

Figure 8.7 The options constants for waitpid

The waitpid function provides three features that aren’t provided by the wait
function.

1. The waitpid function lets us wait for one particular process, whereas the wait
function returns the status of any terminated child. We'll return to this feature
when we discuss the popen function.

2. The waitpid function provides a nonblocking version of wait. There are
times when we want to fetch a child’s status, but we don’t want to block.

3. The waitpid function provides support for job control with the WUNTRACED
and WCONTINUED options.

Example

Recall our discussion in Section 8.5 about zombie processes. If we want to write a
process so that it forks a child but we don’t want to wait for the child to complete and
we don’t want the child to become a zombie until we terminate, the trick is to call fork
twice. The program in Figure 8.8 does this.

Section 8.6 wait and waitpid Functions 225

#include "apue.h"
#include <sys/wait.h>

int
main(void)
{
pid t pid;
if ((pid = fork()) < 0) {
err_sys ("fork error");
} else if (pid == 0) { /* first child */
if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid > 0)
exit (0) ; /* parent from second fork == first child */
/*
* We’'re the second child; our parent becomes init as soon
* as our real parent calls exit() in the statement above.
* Here’s where we’'d continue executing, knowing that when
* we’'re done, init will reap our status.
*/
sleep(2);
printf ("second child, parent pid = sd\n", getppid());
exit (0) ;
}
if (waitpid(pid, NULL, 0) != pid) /* wait for first child */
err sys("waitpid error");
/*
* We're the parent (the original process); we continue executing,
* knowing that we’re not the parent of the second child.
*/
exit (0);
}

Figure 8.8 Avoid zombie processes by calling fork twice

We call sleep in the second child to ensure that the first child terminates before
printing the parent process ID. After a fork, either the parent or the child can continue
executing; we never know which will resume execution first. If we didn’t put the
second child to sleep, and if it resumed execution after the fork before its parent, the
parent process ID that it printed would be that of its parent, not process ID 1.

Executing the program in Figure 8.8 gives us

$./a.out
$ second child, parent pid =1

Note that the shell prints its prompt when the original process terminates, which is
before the second child prints its parent process ID. 0

226 Process Control Chapter 8

8.7 waitid Function

The XSI extension of the Single UNIX Specification includes an additional function to
retrieve the exit status of a process. The waitid function is similar to waitpid, but
provides extra flexibility.

#include <sys/wait.h>
int waitid(idtype_t idtype, id_t id, siginfo_t =*infop, int options) ;

Returns: 0 if OK, -1 on error

Like waitpid, waitid allows a process to specify which children to wait for.
Instead of encoding this information in a single argument combined with the process ID
or process group ID, two separate arguments are used. The id parameter is interpreted
based on the value of idtype. The types supported are summarized in Figure 8.9.

Constant Description

P_PID Wait for a particular process: id contains the process ID of the child to
wait for.

P_PGID | Wait for any child process in a particular process group: id contains the
process group ID of the children to wait for.

P_ALL Wait for any child process: id is ignored.

Figure 8.9 The idtype constants for waitid

The options argument is a bitwise OR of the flags shown in Figure 8.10. These flags
indicate which state changes the caller is interested in.

Constant Description

WCONTINUED | Wait for a process that has previously stopped and has been continued,
and whose status has not yet been reported.

WEXITED Wait for processes that have exited.

WNOHANG Return immediately instead of blocking if there is no child exit status
available.

WNOWAIT Don't destroy the child exit status. The child’s exit status can be
retrieved by a subsequent call towait, waitid, or waitpid.

WSTOPPED Wait for a process that has stopped and whose status has not yet been
reported.

Figure 8.10 The options constants for waitid

The infop argument is a pointer to a siginfo structure. This structure contains
detailed information about the signal generated that caused the state change in the child
process. The siginfo structure is discussed further in Section 10.14.

Of the four platforms covered in this book, only Solaris provides support for waitid.

Section 8.9 Race Conditions 227

8.8

8.9

wait3 and wait4 Functions

Most UNIX system implementations provide two additional functions: wait3 and
wait4. Historically, these two variants descend from the BSD branch of the UNIX
System. The only feature provided by these two functions that isn’t provided by the
wait,waitid, and waitpid functions is an additional argument that allows the kernel
to return a summary of the resources used by the terminated process and all its child
processes.

#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/resource.h>

pid t wait3(int *statloc, int options, struct rusage *rusage) ;
pid t wait4 (pid_t pid, int *statloc, int options, struct rusage *rusage);

Both return: process ID if OK, 0, or —1 on error

The resource information includes such statistics as the amount of user CPU time,
the amount of system CPU time, number of page faults, number of signals received, and
the like. Refer to the get rusage(2) manual page for additional details. (This resource
information differs from the resource limits we described in Section 7.11.) Figure 8.11
details the various arguments supported by the wait functions.

Function pid options | rusage || POSIX.1 Fr;ezl?ISD IZJZLZDZ(Malc O%S X 501; e
wait
waitid . . XSI .
wai tp id L)
wait3 .] . [L] L]
waité . . [. [. .

Figure 8.11 Arguments supported by wait functions on various systems

The wait3 function was included in earlier versions of the Single UNIX Specification. In
Version 2, wait3 was moved to the legacy category; wait3 was removed from the
specification in Version 3.

Race Conditions

For our purposes, a race condition occurs when multiple processes are trying to do
something with shared data and the final outcome depends on the order in which the
processes run. The fork function is a lively breeding ground for race conditions, if any
of the logic after the fork either explicitly or implicitly depends on whether the parent
or child runs first after the fork. In general, we cannot predict which process runs first.
Even if we knew which process would run first, what happens after that process starts
running depends on the system load and the kernel's scheduling algorithm.

228 Process Control Chapter 8

We saw a potential race condition in the program in Figure 8.8 when the second
child printed its parent process ID. If the second child runs before the first child, then
its parent process will be the first child. But if the first child runs first and has enough
time to exit, then the parent process of the second child is init. Even calling sleep,
as we did, guarantees nothing. If the system was heavily loaded, the second child could
resume after sleep returns, before the first child has a chance to run. Problems of this
form can be difficult to debug because they tend to work “most of the time.”

A process that wants to wait for a child to terminate must call one of the wait
functions. If a process wants to wait for its parent to terminate, as in the program from
Figure 8.8, a loop of the following form could be used:

while (getppid() != 1)
sleep(l);

The problem with this type of loop, called polling, is that it wastes CPU time, as the
caller is awakened every second to test the condition.

To avoid race conditions and to avoid polling, some form of signaling is required
between multiple processes. Signals can be used, and we describe one way to do this in
Section 10.16. Various forms of interprocess communication (IPC) can also be used.
We'll discuss some of these in Chapters 15 and 17.

For a parent and child relationship, we often have the following scenario. After the
fork, both the parent and the child have something to do. For example, the parent
could update a record in a log file with the child’s process ID, and the child might have
to create a file for the parent. In this example, we require that each process tell the other
when it has finished its initial set of operations, and that each wait for the other *o
complete, before heading off on its own. The following code illustrates this scenario:

#include "apue.h"
TELL WAIT(); /* set things up for TELL_xxx & WAIT xxx */

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) { /* child */
/* child does whatever is necessary ... */
TELL_PARENT (getppid()) ; /* tell parent we're done */
WAIT _PARENT () ; /* and wait for parent */
/* and the child continues on its way ... */
exit (0);

}

/* parent does whatever is necessary ... */

TELL_CHILD (pid) ; /* tell child we’re done */

WAIT CHILD(); /* and wait for child */

/* and the parent continues on its way ... */

exit (0);

Section 8.9 Race Conditions 229

We assume that the header apue . h defines whatever variables are required. The five
rouﬁnesTELL_WAIT,TELL_PARENT,TELL_CHILD,WAIT_PARENT,mKiWAIT_CHILD
can be either macros or functions.

We'll show various ways to implement these TELL and WAIT routines in later
chapters: Section 10.16 shows an implementation using signals; Figure 15.7 shows an
implementation using pipes. Let’s look at an example that uses these five routines.

Example

The program in Figure 8.12 outputs two strings: one from the child and one from the
parent. The program contains a race condition because the output depends on the order
in which the processes are run by the kernel and for how long each process runs.

#include "apue.h"
static void charatatime (char *);

int
main(void)

{

pid_t pid;

if ((pid = fork()) < 0) {
err_sys("fork error");

} else if (pid == 0) {

charatatime ("output from child\n");
} else {

charatatime ("output from parent\n");
}
exit (0);

}

static void
charatatime (char *str)

{
char *ptr;
int c;
setbuf (stdout, NULL); /* set unbuffered */
for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);

Figure 8.12 Program with a race condition

We set the standard output unbuffered, so every character output generates a write.
The goal in this example is to allow the kernel to switch between the two processes as
often as possible to demonstrate the race condition. (If we didn’t do this, we might
never see the type of output that follows. Not seeing the erroneous output doesn’t

230 Process Control Chapter 8

mean that the race condition doesn't exist; it simply means that we can’t see it on this
particular system.) The following actual output shows how the results can vary:

$./a.out

ooutput from child
utput from parent
$./a.out

ooutput from child
utput from parent
$./a.out

output from child
output from parent

We need to change the program in Figure 8.12 to use the TELL and WAIT functions. The
program in Figure 8.13 does this. The lines preceded by a plus sign are new lines.

#include "apue.h"

static void charatatime(char *);
int)

main (void)

{

pid t pid;
+ TELL _WAIT();
if ((pid = fork()) < 0) {

err_sys("fork error");
} else if (pid == 0) {

+ WAIT_PARENT() ; /* parent goes first */
charatatime ("output from child\n") ;
} else {
charatatime ("output from parent\n");
+ TELL_CHILD(pid) ;
}
exit (0);

}

static void
charatatime (char *str)

{

char *ptr;

int c;

setbuf (stdout, NULL); /* set unbuffered */
for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);

Figure 8.13 Modification of Figure 8.12 to avoid race condition

When we run this program, the output is as we expect; there is no intermixing of output
from the two processes.

Section 8.10 exec Functions 231

8.10

In the program shown in Figure 8.13, the parent goes first. The child goes first if we
change the lines following the fork to be

} else if (pid == 0) {
charatatime ("output from child\n");
TELL_PARENT (getppid(})) ;

} else {
WAIT_CHILD() ; /* child goes first */
charatatime ("output from parent\n");

}

Exercise 8.3 continues this example. =

exec Functions

We mentioned in Section 8.3 that one use of the fork function is to create a new process
(the child) that then causes another program to be executed by calling one of the exec
functions. When a process calls one of the exec functions, that process is completely
replaced by the new program, and the new program starts executing at its main
function. The process ID does not change across an exec, because a new process is not
created; exec merely replaces the current process—its text, data, heap, and stack
segments—with a brand new program from disk.

There are six different exec functions, but we'll often simply refer to “the exec
function,” which means that we could use any of the six functions. These six functions
round out the UNIX System process control primitives. With fork, we can create new
processes; and with the exec functions, we can initiate new programs. The exit
function and the wait functions handle termination and waiting for termination. These
are the only process control primitives we need. We'll use these primitives in later
sections to build additional functions, such as popen and system.

#include <unistd.h>
int execl(const char *pathname, const char *arg0, ... /* (char *)0 */ };
int execv(const char *pathname, char *const arguv(]);

int execle (const char *pathname, const char *arg0,
/* (char *)0, char *const envp[] */);

int execve(const char *pathname, char *const argv[], char *const envp (1) ;
int execlp(const char *filename, const char *arg0, ... /* (char *)0 */)
int execvp(const char *filename, char *comst argu(l);

All six return: —1 on error, no return on success

232 Process Control Chapter 8

The first difference in these functions is that the first four take a pathname
argument, whereas the last two take a filename argument. When a filename argument is
specified

* If filenanie contains a slash, it is taken as a pathname.

* Otherwise, the executable file is searched for in the directories specified by the
PATH environment variable.

The PATH variable contains a list of directories, called path prefixes, that are separated
by colons. For example, the name=value environment string

PATH=/bin:/usr/bin:/usr/local/bin/: .

specifies four directories to search. The last path prefix specifies the current directory.
(A zero-length prefix also means the current directory. It can be specified as a colon at
the beginning of the value, two colons in a row, or a colon at the end of the value.)

There are security reasons for never including the current directory in the search path. See
Garfinkel et al. [2003].

If either execlp or execvp finds an executable file using one of the path prefixes,
but the file isn’t a machine executable that was generated by the link editor, the function
assumes that the file is a shell script and tries to invoke /bin/sh with the filename as
input to the shell.

The next difference concerns the passing of the argument list (1 stands for list and v
stands for vector). The functions execl, execlp, and execle require each of the
command-line arguments to the new program to be specified as separate arguments.
We mark the end of the arguments with a null pointer. For the other three functions
(execv, execvp, and execve), we have to build an array of pointers to the arguments,
and the address of this array is the argument to these three functions.

Before using ISO C prototypes, the normal way to show the command-line
arguments for the three functions execl, execle, and execlp was

char *arg0, char *argl, ..., char *argn, (char *)0

This specifically shows that the final command-line argument is followed by a null
pointer. If this null pointer is specified by the constant 0, we must explicitly cast it to a
pointer; if we don't, it’s interpreted as an integer argument. If the size of an integer is
different from the size of a char *, the actual arguments to the exec function will be
wrong.

The final difference is the passing of the environment list to the new program. The
two functions whose names end in an e (execle and execve) allow us to pass a
pointer to an array of pointers to the environment strings. The other four functions,
however, use the environ variable in the calling process to copy the existing
environment for the new program. (Recall our discussion of the environment strings in
Section 7.9 and Figure 7.8. We mentioned that if the system supported such functions as
setenv and putenv, we could change the current environment and the environment
of any subsequent child processes, but we couldn’t affect the environment of the parent

Section 8.10 exec Functions 233

process.) Normally, a process allows its environment to be propagated to its children,

but in some cases, a process wants to specify a certain environment for a child. One

example of the latter is the login program when a new login shell is initiated.

Normally, login creates a specific environment with only a few variables defined and

lets us, through the shell start-up file, add variables to the environment when we log in.
Before using ISO C prototypes, the arguments to execle were shown as

char *pathname, char *arg0, ..., char *argn, (char *)0, char *envp []

This specifically shows that the final argument is the address of the array of character
pointers to the environment strings. The ISO C prototype doesn’t show this, as all the
command-line arguments, the null pointer, and the envp pointer are shown with the
ellipsis notation (. . .).

The arguments for these six exec functions are difficult to remember. The letters in
the function names help somewhat. The letter p means that the function takes a filename
argument and uses the PATH environment variable to find the executable file. The letter
1 means that the function takes a list of arguments and is mutually exclusive with the
letter v, which means that it takes an argv [] vector. Finally, the letter e means that the
function takes an envp [] array instead of using the current environment. Figure 8.14
shows the differences among these six functions.

Function pathname | filename Arg list argv (] environ envp (]
execl . . .
execlp . . .
execle - . .
execv . . .
execvp . . .
execve i * d
(letter in name) P 1 v e

Figure 8.14 Differences among the six exec functions

Every system has a limit on the total size of the argument list and the environment
list. From Section 2.5.2 and Figure 2.8, this limit is given by ARG_MAX. This value must
be at least 4,096 bytes on a POSIX.1 system. We sometimes encounter this limit when
using the shell’s filename expansion feature to generate a list of filenames. On some
systems, for example, the command

grep getrlimit /usr/share/man/*/*
can generate a shell error of the form

Argument list too long

Historically, the limit in older System V implementations was 5,120 bytes. Older BSD systems
had a limit of 20,480 bytes. The limit in current systems is much higher. (See the output from
the program in Figure 2.13, which is summarized in Figure 2.14.)

234 Process Control Chapter 8

To get around the limitation in argument list size, we can use the xargs(1)
command to break up long argument lists. To look for all the occurrences of
getrlimit in the man pages on our system, we could use

find /usr/share/man -type f -print | xargs grep getrlimit
If the man pages on our system are compressed, however, we could try
find /usr/share/man -type f -print | xargs bzgrep getrlimit

We use the type -f option to the f£ind command to restrict the list to contain only
regular files, because the grep commands can't search for patterns in directories, and
we warnt to avoid unnecessary error messages.

We’ve mentioned that the process ID does not change after an exec, but the new
program inherits additional properties from the calling process:

® Process ID and parent process ID

¢ Real user ID and real group ID

* Supplementary group IDs

¢ Process group ID

¢ Session ID

¢ Controlling terminal

* Time left until alarm clock

¢ Current working directory

* Root directory

* File mode creation mask

* File locks

* Process signal mask

* Pending signals

* Resource limits

* Values for tms_utime, tms_stime, tms_cutime, and tms_cstime
The handling of open files depends on the value of the close-on-exec flag for each
descriptor. Recall from Figure 3.6 and our mention of the FD_CLOEXEC flag in
Section 3.14 that every open descriptor in a process has a close-on-exec flag. If this flag
is set, the descriptor is closed across an exec. Otherwise, the descriptor is left open
across the exec. The default is to leave the descriptor open across the exec unless we
specifically set the close-on-exec flag using fent1.

POSIX.1 specifically requires that open directory streams (recall the opendir
function from Section 4.21) be closed across an exec. This is normally done by the

opendir function calling fcntl to set the close-on-exec flag for the descriptor
corresponding to the open directory stream.

Section 8.10 exec Functions 235

Note that the real user ID and the real group ID remain the same across the exec,
but the effective IDs can change, depending on the status of the set-user-ID and the set-
group-ID bits for the program file that is executed. If the set-user-ID bit is set for the
new program, the effective user ID becomes the owner ID of the program file.
Otherwise, the effective user ID is not changed (it’s not set to the real user ID). The
group ID is handled in the same way.

In many UNIX system implementations, only one of these six functions, execve, is
a system call within the kernel. The other five are just library functions that eventually
invoke this system call. We can illustrate the relationship among these six functions as

shown in Figure 8.15.
——
execlp execle
|
‘build argu

build argo

try each use execve
. execv
PATH prefix

environ (system call) |

Figure 8.15 Relationship of the six exec functions

In this arrangement, the library functions execlp and execvp process the PATH
environment variable, looking for the first path prefix that contains an executable file
named filename.

Example

The program in Figure 8.16 demonstrates the exec functions.

#include "apue.h"
#include <sys/wait.h>

char *env_init (] = { "USER=unknown", "PATH=/tmp", NULL };
int

main (void)

{

pid_t pid;

if ((pid = fork()) < 0) {
err_sys("fork error");
} else if (pid == 0) { /* specify pathname, specify environment * /
if (execle("/home/sar/bin/echoall", "echoall", "myargl",
"MY ARG2", (char *)0, env_init) < 0)
err_sys("execle error") ;

236

Process Control Chapter 8

}

if (waitpid(pid, NULL, 0) < 0)
err sys("wait error");

if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* specify filename, inherit environment */
if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)
err_sys("execlp error");

}

exit (0) ;

Figure 8.16 Example of exec functions

We first call execle, which requires a pathname and a specific environment. The
next call is to execlp, which uses a filename and passes the caller’s environment to the
new program. The only reason the call to execlp works is that the directory
/home/sar/bin is one of the current path prefixes. Note also that we set the first
argument, argv[0] in the new program, to be the filename component of the
pathname. Some shells set this argument to be the complete pathname. This is a
convention only. We can set argv [0] to any string we like. The 1ogin command does
this when it executes the shell. Before executing the shell, 1ogin adds a dash as a prefix
to argv [0] to indicate to the shell that it is being invoked as a login shell. A login shell
will execute the start-up profile commands, whereas a nonlogin shell will not.

The program echoall that is executed twice in the program in Figure 8.16 is
shown in Figure 8.17. It is a trivial program that echoes all its command-line arguments
and its entire environment list.

#include "apue.h"

int

main(int argc, char *argv([])
int i;
char **pty;
extern char **environ;

for (i = 0; 1 < argc; i++) /* echo all command-line args */
printf ("argv{%d]: %s\n", i, argv[il);

for (ptr = environ; *ptr != 0; ptr++) /* and all env strings */
printf ("%s\n", *ptr);

exit (0) ;

Figure 8.17 Echo all command-line arguments and all environment strings

Section 8.11 Changing User IDs and Group IDs 237

8.11

When we execute the program from Figure 8.16, we get

¢ ./a.out
argv({0]: echoall
argvil]: myargl
argv([2]: MY ARG2
USER=unknown

PATH=/tmp

$ argv[0}: echoall
argvill: only 1 arg
USER=sar

LOGNAME=sar
SHELL=/bin/bash

47 more lines that aren’t shown
HOME=/home/sar

Note that the shell prompt appeared before the printing of argv [0] from the second
exec. This is because the parent did not wait for this child process to finish. m)

Changing User IDs and Group IDs

In the UNIX System, privileges, such as being able to change the system’s notion of the
current date, and access control, such as being able to read or write a particular file, are
based on user and group IDs. When our programs need additional privileges or need
to gain access to resources that they currently aren’t allowed to access, they need to
change their user or group ID to an ID that has the appropriate privilege or access.
Similarly, when our programs need to lower their privileges or prevent access to certain
resources, they do so by changing either their user ID or group ID to an ID without the
privilege or ability access to the resource.

In general, we try to use the least-privilege model when we design our applications.
Following this model, our programs should use the least privilege necessary to
accomplish any given task. This reduces the likelihood that security can be
compromised by a malicious user trying to trick our programs into using their
privileges in unintended ways.

We can set the real user ID and effective user ID with the setuid function.
Similarly, we can set the real group 1D and the effective group 1D with the setgid
function.

#include <unistd.h>
3

] I

% int setuidiuid_t wuidi; }

“ int setgid(gid_t gid);

Both return: 0 if OK, -1 on error

There are rules for who can change the IDs. Let’s consider only the user ID for now.
(Everything we describe for the user ID also applies to the group ID.)

238 Process Control Chapter 8

1. If the process has superuser privileges, the setuid function sets the real user
ID, effective user ID, and saved set-user-ID to uid.

2. If the process does not have superuser privileges, but uid equals either the real
user ID or the saved set-user-ID, setuid sets only the effective user ID to uid.
The real user ID and the saved set-user-1D are not changed.

3. If neither of these two conditions is true, errno is set to EPERM, and -1 is
returned.

Here, we are assuming that POSIX_SAVED_IDS is true. If this feature isn’t provided,
then delete all preceding references to the saved set-user-1D.

The saved IDs are a mandatory feature in the 2001 version of POSIX.1. They used to be
optional in older versions of POSIX. To see whether an implementation supports this feature,
an application can test for the constant _POSIX_SAVED_IDS at compile time or call sysconf
with the _SC_SAVED_IDS argument at runtime.

We can make a few statements about the three user IDs that the kernel maintains.

1. Only a superuser process can change the real user ID. Normally, the real user
ID is set by the login(1) program when we log in and never changes. Because
login is a superuser process, it sets all three user IDs when it calls setuid.

2. The effective user ID is set by the exec functions only if the set-user-ID bit is set
for the program file. If the set-user-ID bit is not set, the exec functions leave the
effective user ID as its current value. We can call setuid at any time to set the
effective user ID to either the real user ID or the saved set-user-1D. Naturally,
we can't set the effective user ID to any random value.

3. The saved set-user-ID is copied from the effective user ID by exec. If the file’s
set-user-ID bit is set, this copy is saved after exec stores the effective user ID
from the file’s user ID.

Figure 8.18 summarizes the various ways these three user IDs can be changed.

exec setuid (uid)
ID L . S . unprivileged
set-user-ID bit off set-user-ID bit on superuser user
real user ID unchanged unchanged settouid | unchanged
-effective user ID | unchanged set from user ID of settouid | setto uid
program file
saved set-user ID | copied from effective copied from effective setto uid | unchanged
user ID user ID

Figure 8.18 Ways to change the three user IDs

Note that we can obtain only the current value of the real user ID and the effective user
ID with the functions getuid and geteuid from Section 8.2. We can’t obtain the
current value of the saved set-user-1D.

Section 8.11 Changing User IDs and Group IDs 239

Example

To see the utility of the saved set-user-ID feature, let’s examine the operation of a
program that uses it. We'll look at the man(1) program, which is used to display online
manual pages. The man program can be installed either set-user-ID or set-group-ID to a
specific user or group, usually one reserved for man itself. The man program can be
made to read and possibly overwrite files in locations that are chosen either through a
configuration file (usually /etc/man.config or /etc/manpath.conf ig) or using a
command-line option.

The man program might have to execute several other commands to process the
files containing the manual page to be displayed. To prevent being tricked into running
the wrong commands or overwriting the wrong files, the man command has to switch
between two sets of privileges: those of the user running the man command and those
of the user that owns the man executable file. The following steps take place.

1. Assuming that the man program file is owned by the user name man and has its
set-user-1D bit set, when we exec it, we have

real user ID = our user ID
effective user ID = man
saved set-user-ID = man

2. The man program accesses the required configuration files and manual pages.
These files are owned by the user name man, but because the effective user ID is
man, file access is allowed.

3. Before man runs any command on our behalf, it calls setuid(getuid()).
Because we are not a superuser process, this changes only the effective user ID.
We have

real user ID = our user ID (unchanged)
effective user ID = our user ID
saved set-user-ID = man (unchanged)

Now the man process is running with our user ID as its effective user ID. This
means that we can access only the files to which we have normal access. We
have no additional permissions. It can safely execute any filter on our behalf.

4. When the filter is done, man calls setuid teuid) , where euid is the numerical
user 1D for the user name man. (This was saved by man by calling geteuid.)
This call is allowed because the argument to setuid equals the saved
set-user-ID. (This is why we need the saved set-user-ID.) Now we have

real user ID = our user ID (unchanged)
effective user ID = man
saved set-user-ID = man (unchanged)

5. The man program can now operate on its files, as its effective user ID is man.

By using the saved set-user-ID in this fashion, we can use the extra privileges granted to
us by the set-user-ID of the program file at the beginning of the process and at the end

240 Process Control Chapter 8

of the process. In between, however, the process runs with our normal permissions. If
we weren't able to switch back to the saved set-user-ID at the end, we might be tempted
to retain the extra permissions the whole time we were running (which is asking for
trouble).

Let’s look at what happens if man spawns a shell for us while it is running. (The
shell is spawned using fork and exec.) Because the real user ID and the effective user
ID are both our normal user ID (step 3), the shell has no extra permissions. The shell
can’t access the saved set-user-ID that is set to man while man is running, because the
saved set-user-ID for the shell is copied from the effective user ID by exec. So in the
child process that does the exec, all three user IDs are our normal user 1D.

Our description of how man uses the setuid function is not correct if the program
is set-user-ID to root, because a call to setuid with superuser privileges sets all three
user IDs. For the example to work as described, we need setuid to set only the
effective user ID. O

setreuid and setregid Functions

Historically, BSD supported the swapping of the real user ID and the effective user ID
with the setreuid function.

‘ #include <unistd.h>

|

i

1 int setreuid(uid_t rwd, uid_t ewid) ;
|

int setregid(gid_t rgid, gid_t egid);

Both return: 0 if OK, -1 on error

We can supply a value of -1 for any of the arguments to indicate that the corresponding
ID should remain unchanged.

The rule is simple: an unprivileged user can always swap between the real user [D
and the effective user ID. This allows a set-user-ID program to swap to the user’s
normal permissions and swap back again later for set-user-ID operations. When the
saved set-user-ID feature was introduced with POSIX.1, the rule was enhanced to also
allow an unprivileged user to set its effective user ID to its saved set-user-ID.

Both setreuid and setregid are XSI extensions in the Single UNIX Specification. As such,
all UNIX System implementations are expected to provide support for them.

4.3BSD didn't have the saved set-user-ID feature described earlier. It used setreuid and
setregid instead. This allowed an unprivileged user to swap back and forth between the
two values. Be aware, however, that when programs that used this feature spawned a shell,
they had to set the real user ID to the normal user ID before the exec. If they didn’t do this,
the real user ID could be privileged (from the swap done by setreuid) and the shell process
could call setreuid to swap the two and assume the permissions of the more privileged user.
As a defensive programming measure to solve this problem, programs set both the real user 1D
and the effective user 1D to the normal user ID before the call to exec in the child.

Section 8.11 Changing User IDs and Group 1Ds 241

seteuid and setegid Functions

POSIX.1 includes the two functions seteuid and setegid. These functions are
similar to setuid and setgid, but only the effective user ID or effective group 1D is
changed.

#include <unistd.h>
int seteuid(uid_t uid);

i
|
|
| int setegidigid t gid);
{

Both return: 0 if OK, -1 on error

An unprivileged user can set its effective user ID to either its real user ID or its saved
set-user-ID. For a privileged user, only the effective user ID is set to uid. (This differs
from the setuid function, which changes all three user 1Ds.)

Figure 8.19 summarizes all the functions that we've described here that modify the
three user IDs.

superuser superuser superuser
setreuid (ruid, cuid) setuid (uid) seteuid (uwid)
\\i///,'/ \\'\if/" N Lny \(\é//’ g
| T~ 7 ; T~ 7
ruid| e " uid ’
| /\\
/ \\‘\\ ;
+ // T~ N > \\\
Vs T ' ‘/ T
real ; unpn\'lleged\‘l\ effective ~ unprivileged 4{ saved |
i ! . :
{ user [ID setreuid . user ID setreuid | set-user- ID \
~— o
— o E T)“_,ﬁ —
\ / : o /
/ exec of 7 /
\\.\ set-user-1D e
\\\ . ' 7
\\\ - . /
e o S
unprivileged unprivileged
setuid or seteuid setuidor seteuid

Figure 8.19 Summary of all the functions that set the various user IDs

Group IDs

Everything that we've said so far in this section also applies in a similar fashion to
group IDs. The supplementary group IDs are not affected by setgid, setregid, or
setegid.

242

Process Control Chapter 8

8.12

Interpreter Files

All contemporary UNIX systems support interpreter files. These files are text files that
begin with a line of the form

#! pathname [optional-argument]

The space between the exclamation point and the pathname is optional. The most
common of these interpreter files begin with the line

#1/bin/sh

The pathname is normally an absolute pathname, since no special operations are
performed on it (i.e., PATH is not used). The recognition of these files is done within the
kernel as part of processing the exec system call. The actual file that gets executed by
the kernel is not the interpreter file, but the file specified by the pathname on the first line
of the interpreter file. Be sure to differentiate between the interpreter file—a text file
that begins with #!—and the interpreter, which is specified by the pathname on the first
line of the interpreter file.

Be aware that systems place a size limit on the first line of an interpreter file. This
limit includes the # !, the pathname, the optional argument, the terminating newline, and
any spaces.

On FreeBSD 5.2.1, this limit is 128 bytes. Mac OS X 10.3 extends this limit to 512 bytes. Linux
2.4.22 supports a limit of 127 bytes, whereas Solaris 9 places the limit at 1,023 bytes

Example

Let’s look at an example to see what the kernel does with the arguments to the exec
function when the file being executed is an interpreter file and the optional argument on
the first line of the interpreter file. The program in Figure 8.20 execs an interpreter file.

#include "apue.h"
#include <sys/wait.h>

int
main(void) .
{
pid_t pid;
if ((pid = fork()) < 0) {
err sys("fork error");
} else if (pid == 0) { /* child */
if (execl("/home/sar/bin/testinterp",
"testinterp", "myargl", "MY ARG2", (char *)0) < 0)
err_sys("execl error");
}

if (waitpid(pid, NULL, 0) < 0) /* parent */
err sys("waitpid error");
exitc (0) ;

Figure 8.20 A program that execs an interpreter file

Section 8.12 Interpreter Files 243

The following shows the contents of the one-line interpreter file that is executed and the
result from running the program in Figure 8.20:

$ cat /home/sar/bin/testinterp
#!/home/sar/bin/echoarg foo

$./a.out

argv([0]: /home/sar/bin/echoarg
argv([l]: foo

argv([2]: /home/sar/bin/testinterp
argv([3]: myargl

argv (4] : MY ARG2

The program echoarg (the interpreter) just echoes each of its command-line
arguments. (This is the program from Figure 7.4.) Note that when the kernel execs the
interpreter (/home /sar/bin/echoarg), argv[0] is the pathname of the interpreter,
argv(1] is the optional argument from the interpreter file, and the remaining
arguments are the pathname (/home/sar/bin/testinterp) and the second and third
arguments from the call to exec1 in the program shown in Figure 8.20 (myargl and MY
ARG2). Both argv[1] and argv[2] from the call to execl have been shifted right two
positions. Note that the kernel takes the pathname from the execl call instead of the
first argument (testinterp), on the assumption that the pathname might contain more
information than the first argument. o

Example

A common use for the optional argument following the interpreter pathname is to
specify the - £ option for programs that support this option. For example, an awk(1)
program can be executed as

awk -f myfile
which tells awk to read the awk program from the filemyfile.

Systems derived from UNIX System V often include two versions of the awk language. On
these systems, awk is often called “old awk” and corresponds to the original version
distributed with Version 7. In contrast, nawk (new awk) contains numerous enhancements and
corresponds to the language described in Aho, Kernighan, and Weinberger [1988]. This newer
version provides access to the command-line arguments, which we need for the example that
follows. Solaris 9 provides both versions.

The awk program is one of the utilities included by POSIX in its 1003.2 standard, which is now
part of the base POSIX.1 specification in the Single UNIX Specification. This utility is also
based on the language described in Aho, Kernighan, and Weinberger [1988].

The version of awk in Mac OS X 10.3 is based on the Bell Laboratories version that Lucent has
placed in the public domain. FreeBSD 5.2.1 and Linux 2.4.22 ship with GNU awk, called gawk,
which is linked to the name awk. The gawk version conforms to the POSIX standard, but also
includes other extensions. Because they are more up-to-date, the version of awk from Bell
Laboratories and gawk are preferred to either nawk or old awk. (The version of awk from Bell
Laboratories is available at http://cm.bell-labs. com/cm/cs/awkbook/index . html.)

244 Process Control Chapter 8

Using the - f option with an interpreter file lets us write

#!/bin/awk -f
(acek program follows in the interpreter file)

For example, Figure 8.21 shows /usr/local/bin/awkexample (an interpreter file).

#!/bin/awk -f

BEGIN {
for (i = 0; 1 <« ARGC; i++)
printf "ARGV[%d] = %$s\n", i, ARGV [i]
exit
}

Figure 8.21 An awk program as an interpreter file

If one of the path prefixes is /usr/local/bin, we can execute the program in
Figure 8.21 (assuming that we’ve turned on the execute bit for the file) as

$ awkexample filel FILENAME2 f£3
ARGV [0] = awk

ARGV ([1] = filel

ARGV (2] = FILENAME2

ARGV I[3] = f3

When /bin/awk is executed, its command-line arguments are
/bin/awk -f /usr/local/bin/awkexample filel FILENAMEZ2 f£3

The pathname of the interpreter file (/usxr/local/bin/awkexample) is passed to the
interpreter. The filename portion of this pathname (what we tvped to the shell) isn't
adequate, because the interpreter (/bin/awk in this example) can’t be expected to use
the PATH variable to locate files. When it reads the interpreter file, awk ignores the first
line, since the pound sign is awk’s comment character.

We can verity these command-line arguments with the following commands:

5 /bin/su become superuser

Password: enter superuser password

mv /bin/awk /bin/awk.save save the original program

cp /home/sar/bin/echoarg /bin/awk and replace it temporarily

suspend suspend the superuser shell using job control
[1] + Stopped /bin/su

$ awkexample filel FILENAME2 £3
argv({0]: /bin/awk

argv([1l]: -f

argv(2]: /usr/local/bin/awkexample

argv([3]: filel

argv([4]: FILENAME2

argv(5]: £3

$ £g resume superuscr shell using job control
/bin/su

mv /bin/awk.save /bin/awk restore the original program

exit ' and exit the superuser shell

Section 8.12 Interpreter Files 245

In this example, the - £ option for the interpreter is required. As we said, this tells awk
where to look for the awk program. If we remove the - option from the interpreter
file, an error message usually results when we try to run it. The exact text of the
message varies, depending on where the interpreter file is stored and whether the
remaining arguments represent existing files. This is because the command-line
arguments in this case are

/bin/awk /usr/local/bin/awkexample filel FILENAME2 f3

and awk is trying to interpret the string /usr/local/bin/awkexample as an awk
program. If we couldn’t pass at least a single optional argument to the interpreter (-f
in this case), these interpreter files would be usable only with the shells. .|

Are interpreter files required? Not really. They provide an efficiency gain for the
user at some expense in the kernel (since it's the kernel that recognizes these files).
Interpreter files are useful for the following reasons.

1. They hide that certain programs are scripts in some other language. For
example, to execute the program in Figure 8.21, we just say

awkexample optional-arguments

instead of needing to know that the program is really an awk script that we
would otherwise have to execute as

awk -f awkexample optional-argunicnts

2. Interpreter scripts provide an efficiency gain. Consider the previous example
again. We could still hide that the program is an awk script, by wrapping it in a
shell script:

awk ‘BEGIN {
for (i = 0; 1 < ARGC; 1++)
printf "ARGV [%3d] = %s\n", 1, ARGV [1]
exit
brosx
The problem with this solution is that more work is required. First, the shell
reads the command and tries to exec1p the filename. Because the shell script is
an executable file, but isn't a machine executable, an error is returned, and
execlp assumes that the file is a shell script (which it is). Then /bin/sh is
executed with the pathname of the shell script as its argument. The shell
correctly runs our script, but to run the awk program, the shell does a fork,
exec, and wait. Thus, there is more overhead in replacing an interpreter script
with a shell script.

3. Interpreter scripts let us write shell scripts using shells other than / bin/sh.
When it finds an executable file that isn’t a machine executable, execlp has to
choose a shell to invoke, and it always uses /bin/sh. Using an interpreter
script, however, we can simply write

246

Process Control Chapter 8

8.13

#!/bin/csh
(C shell script follows in the interpreter file)

Again, we could wrap this all in a /bin/sh script (that invokes the C shell), as
we described earlier, but more overhead is required.

None of this would work as we’ve shown if the three shells and awk didn’t use the
pound sign as their comment character.

system Function

It is convenient to execute a command string from within a program. For example,
assume that we want to put a time-and-date stamp into a certain file. We could use the
functions we describe in Section 6.10 to do this: call time to get the current calendar
time, then call localtime to convert it to a broken-down time, and then call
strftime to format the result, and write the results to the file. It is much easier,
however, to say

system("date > file");

ISO C defines the system function, but its operation is strongly system dependent.
POSIX.1 includes the system interface, expanding on the ISO C definition to describe
its behavior in a POSIX environment.

#include <stdlib.hs>
int system(const char *cmdstring) ;

Returns: (see below)

If cmdstring is a null pointer, system returns nonzero only if a command processor
is available. This feature determines whether the system function is supported on a
given operating system. Under the UNIX System, system is always available.

Because system is implemented by calling fork, exec, and waitpid, there are
three types of return values.

1. If either the fork fails or waitpid returns an error other than EINTR, system
returns -1 with errno set to indicate the error.

2. If the exec fails, implying that the shell can’t be executed, the return value is as
if the shell had executed exit (127).

3. Otherwise, all three functions—fork, exec, and waitpid—succeed, and the
return value from system is the termination status of the shell, in the format
specified for waitpid. .

Some older implementations of system returned an error (EINTR) if waitpid was
interrupted by a caught signal. Because there is no cleanup strategy that an application
can use to recover from this type of error, POSIX later added the requirement that
system not return an error in this case. (We discuss interrupted system calls in
Section 10.5.) .

Section 8.13 system Function 247

Figure 8.22 shows an implementation of the system function. The one feature that
it doesn’t handle is signals. We'll update this function with signal handling in

Section 10.18.
#include <sys/wait.h>
#include <errno.h>
#include <unistd.h>
int
system(const char *cmdstring) /* version without signal handling */
{

pid _t pid;

int status;

if (cmdstring == NULL)

return(l) ; /* always a command processor with UNIX */

if ((pid = fork(})) < 0) {

status = -1; /* probably out of processes */
} else if (pid == 0) { /* child */
execl ("/bin/sh", "sh", "-c", cmdstring, (char *)0);
_exit(127); /* execl error */
} else { /* parent */
while (waitpid(pid, &status, 0) < 0) {
if (errno != EINTR) {
status = -1; /* error other than EINTR from waitpid() */
break; ’
}
}

}

return (status) ;

Figure 8.22 The system function, without signal handling

The shell’s -c option tells it to take the next command-line argument—cmdstring, in
this case—as its command input instead of reading from standard input or from a given
file. The shell parses this null-terminated C string and breaks it up into separate
command-line arguments for the command. The actual command string that is passed
to the shell can contain any valid shell commands. For example, input and output
redirection using < and > can be used.

If we didn’'t use the shell to execute the command, but tried to execute the
command ourself, it would be more difficult. First, we would want to call execlp
instead of execl, to use the PATH variable, like the shell. We would also have to break
up the null-terminated C string into separate command-line arguments for the call to
execlp. Finally, we wouldn’t be able to use any of the shell metacharacters.

Note that we call _exit instead of exit. We do this to prevent any standard I/O
buffers, which would have been copied from the parent to the child across the fork,
from being flushed in the child.

248

Process Control Chapter 8

We can test this version of system with the program shown in Figure 8.23. (The
pr_exit function was defined in Figure 8.5.)

#include "apue.h"
#include <sys/wait.h>
int

main(veoid)

{

int status;

if ((status = system{"date")) < 0)
err_sys("system() error");
pr_exit (status) ;

if ((status = system("nosuchcommand")) < 0)
err_sys("system() error");
pr_exit (status) ;

if ((status = system("who; exit 44")) < 0)
err_sys("system() error");
pr_exit (status);

exit (0);

Figure 8.23 Calling the system function

Running the program in Figure 8.23 gives us

$./a.out
Sun Mar 21 18:41:32 EST 2004
normal termination, exit status = 0 for date

sh: nosuchcommand: command not found
normal termination, exit status = 127 for nosuchcommand

sar :0 Mar 18 19:45

sar pts/0 Mar 18 19:45 (:0)

sar pts/1 Mar 18 19:45 (:0)

sar pts/2 Mar 18 19:45 (:0)

sar pts/3 Mar 18 19:45 (:0)

normal termination, exit status = 44 for exit

The advantage in using system, instead of using fork and exec directly, is that
system does all the required error handling and (in our next version of this function in
Section 10.18) all the required signal handling.

Earlier systems, including SVR3.2 and 4.3BSD, didn't have the waitpid function
available. Instead, the parent waited for the child, using a statement such as

while ((lastpid = wait (&status)) != pid && lastpid != -1)

A problem occurs if the process that calls system has spawned its own children before

calling system. Because the while statement above keeps looping until the child that
was generated by system terminates, if any children of the process terminate before the

Section 8.13 system Function 249

process identified by pid, then the process ID and termination status of these other
children are discarded by the while statement. Indeed, this inability to wait for a
specific child is one of the reasons given in the POSIX.1 Rationale for including the
waitpid function. We'll see in Section 153 that the same problem occurs with the
popen and pclose functions, if the system doesn’t provide a waitpid function.

Set-User-ID Programs

What happens if we call system from a set-user-ID program? Doing so is a security
hole and should never be done. Figure 8.24 shows a simple program that just calls
systen for its command-line argument.

#include "apue.h"

int
main(int argc, char *argv(])

{

int status;

if (argc < 2)
err quit("command-line argument required") ;

if ((status = system(argv{l])) < 0)
err _sys("system() error");

pr_exit (status);

exit (0);

Figure 8.24 Execute the command-line argument using system

We'll compile this program into the executable file tsys.
Figure 8.25 shows another simple program that prints its real and effective user IDs.

#include "apue.h"

int

main (void)

{
printf ("real uid = %4, effective uid = $d\n", getuid(), geteuid(});
exit (0);

Figure 8.25 Print real and effective user IDs

We'll compile this program into the executable file printuids. Running both
programs gives us the following:

250

Process Control Chapter 8

8.14

$ tsys printuids normal execution, no special privileges
real uid = 205, effective uid = 205

normal termination, exit status = 0

$ su become superuser

Password: enter superuser password

chown root tsys change owner

chmod u+s tsys make set-user-1D

18 -1 tsys verify file’s permissions and owner
-rwsSrwxr-x 1 root 16361 Mar 16 16:59 tsys

exit leave superuser shell

$ tsys printuids

real uid = 205, effective uid = 0 oops, this is a security hole
normal termination, exit status = 0

The superuser permissions that we gave the t sys program are retained across the fork
and exec that are done by system.

When /bin/sh is bash version 2, the previous example doesn’t work, because bash will
reset the effective user ID to the real user ID when they don’t match.

If it is running with special permissions—either set-user-ID or set-group-ID—and
wants to spawn another process, a process should use fork and exec directly, being
certain to change back to normal permissions after the fork, before calling exec. The
system function should never be used from a set-user-ID or a set-group-ID program.

One reason for this admonition is that system invokes the shell to parse the command string,
and the shell uses its IFS variable as the input field separator. Older versions of the shell
didn’t reset this variable to a normal set of characters when invoked. This allowed a malicious
user to set IFS before system was called, causing system to execute a different program.

Process Accounting

Most UNIX systems provide an option to do process accounting. When enabled, the
kernel writes an accounting record each time a process terminates. These accounting
records are typically a small amount of binary data with the name of the command, the
amount of CPU time used, the user ID and group ID, the starting time, and so on. We'll
take a closer look at these accounting records in this section, as it gives us a chance to
look at processes again and to use the fread function from Section 5.9.

Process accounting is not specified by any of the standards. Thus, all the implementations
have annoying differences. For example, the 1/0 counts maintained on Solaris 9 are in units of
bytes, whereas FreeBSD 5.2.1 and Mac OS X 10.3 maintain units of blocks, although there is no
distinction between different block sizes, making the counter effectively useless. Linux 2.4.22,
on the other hand, doesn't try to maintain 1/O statistics at all.

Each implementation also has its own set of administrative commands to process raw
accounting data. For example, Solaris provides runacct(lm) and acctcom(l), whereas
FreeBSD provides the sa(8) command to process and summarize the raw accounting data.

A function we haven’t described (acct) enables and disables process accounting.
The only use of this function is from the accton(8) command (which happens to be one

Section 8.14 Process Accounting 251

of the few similarities among platforms). A superuser executes accton with a
pathname argument to enable accounting. The accounting records are written to the
specified file, which is usually /var/account/acct on FreeBSD and Mac OS X,
/var/account /pacct on Linux, and /var/adm/pacct on Solaris. Accounting is
turned off by executing accton without any arguments.

The structure of the accounting records is defined in the header <sys/acct.h>
and looks something like

typedef u_short comp_t; /* 3-bit base 8 exponent; 13-bit fraction */

struct acct

{

char ac_flag; /* flag (see Figure 8.26) */

char ac_stat; /* termination status (signal & core flag only) */
/* (Solaris only) */

uid_t ac_uid; /* real user ID */

gid t ac_gid; /* real group ID */

dev_t ac_tty; /* controlling terminal */

time_t ac_btime; /* starting calendar time */

comp_t ac_utime; /* user CPU time (clock ticks) */

comp_t ac_stime; /* system CPU time (clock ticks) */

comp_t ac_etime; /* elapsed time (clock ticks) */

comp_t ac_mem; /* average memory usage */

comp_t ac_io; /* bytes transferred (by read and write) */
/* "blocks" on BSD systems */

comp_t ac_rw; /* blocks read or written */

/* (not present on BSD systems) */

char ac_comm[8]; /* command name: [8] for Solaris, */
/* [10] for Mac OS X, [16] for FreeBSD, and */
/* [17] for Linux */

}i

The ac_flag member records certain events during the execution of the process.
These events are described in Figure 8.26.

‘ — FreeBSD Linux MacOSX Solaris

ac_flag Description 501 2422 103 9
AFORK process is the result of fork, but never called exec . o . .
ASU process used superuser privileges . . D
ACOMPAT | process used compatibility mode

ACORE process dumped core . . .

AXSIG process was killed by a signal o . .

AEXPND expanded accounting entry .

Figure 8.26 Values for ac_flag from accounting record

The data required for the accounting record, such as CPU times and number of
characters transferred, is kept by the kernel in the process table and initialized
whenever a new process is created, as in the child after a fork. Each accounting record

252 Process Control Chapter 8

is written when the process terminates. This means that the order of the records in the
accounting file corresponds to the termination order of the processes, not the order in
which they were started. To know the starting order, we would have to go through the
accounting file and sort by the starting calendar time. But this isn't perfect, since
calendar times are in units of seconds (Section 1.10), and it’s possible for many
processes to be started in any given second. Alternatively, the elapsed time is given in
clock ticks, which are usually between 60 and 128 ticks per second. But we don’t know
the ending time of a process; all we know is its starting time and ending order. This
means that even though the elapsed time is more accurate than the starting time, we
still can’t reconstruct the exact starting order of various processes, given the data in the
accounting file.

The accounting records correspond to processes, not programs. A new record is
initialized by the kernel for the child after a fork, not when a new program is executed.
Although exec doesn’t create a new accounting record, the command name changes,
and the AFORK flag is cleared. This means that if we have a chain of three programs—A
execs B, then B execs C, and C exits—only a single accounting record is written.
The command name in the record corresponds to program C, but the CPU times, for
example, are the sum for programs A, B, and C.

Example

To have some accounting data to examine, we’ll create a test program to implement the
diagram shown in Figure 8.27.

parent
| ~Jo st chi
sleep(2) | 4 first child
exit (2) T L&
___} sleep (4) \01",(. second child
T abort () X NS
| | %y third child
———— Y

——y

i i E
| Isleep(8) [\\O\q fourth child
RN

I —_
; lexit(0) : B
i execl I isleep(6) ‘
i lkill1() |
| |
/bin/dd I —
r y
| |
| |
L

Figure 8.27 Process structure for accounting example

The source for the test program is shown in Figure 8.28. It calls fork four times. Each
child does something different and then terminates.

Section 8.14 Process Accounting 253
#include "apue.h"
int
main(void)
{
pid_t pid;
if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid != 0) { /* parent */
sleep(2);
exit (2); /* terminate with exit status 2 */
}
/* first child */
if ({pid = fork()) < 0)
err_sys("fork error");
else if (pid !'= 0) {
sleep(4);
abort () ; /* terminate with core dump */
}
/* second child */
if ((pid = fork()) < 0)
err_sys("fork error");
else if (pid != 0) {
execl ("/bin/dd", "dd", "if=/etc/termcap", "of=/dev/null", NULL);
exit (7); /* shouldn’t get here */
}
/* third child */
if ((pid = fork()) < 0)
err_sys("fork error");
elgse if (pid != 0) {
sleep(8) ;
exit (0); /* normal exit */
}
/* fourth child */
sleep (6) ;
kill (getpid(), SIGKILL); /* terminate w/signal, no core dump */
exit (6); /* shouldn’t get here */

Figure 8.28 Program to generate accounting data

We'll run the test program on Solaris and then use the program in Figure 8.29 to

print out selected fields from the accounting records.

254 Process Control Chapter 8

#include "apue.h"
#include <sys/acct.h>

#ifdef HAS_SA STAT

#define FMT "%-*.*gs e

$61d, chars = %71d, stat = %3u: %c %c %c %c\n"

#else

#define FMT "%-*.*s e = %61d, chars = %71d, %c %c %c %c\n"
#endif

#ifndef HAS ACORE

#define ACORE 0

#endif

#ifndef HAS AXSIG

#define AXSIG 0

#endif

static unsigned long
compt2ulong (comp_t comptime) /* convert comp_t to unsigned long */

{

}

int

unsigned long val;
int exp;

val = comptime & Ox1fff; /* 13-bit fraction */
exp = (comptime >> 13) & 7; /* 3-bit exponent (0-7) */
while (exp-- > 0)
val *= 8;
return(val) ;

main(int argc, char *argvl[])

{

struct acct acdata;

FILE *fp;

if (argc != 2)
err quit ("usage: pracct filename") ;

if ((fp = fopen(argv[l], "r")) == NULL)
err_sys("can’'t open %s", argv([l]);

while (fread(&acdata, sizeof (acdata), 1, fp) == 1) {

printf (FMT, (int)sizeof (acdata.ac_comm),
(int)sizeof (acdata.ac_comm), acdata.ac_comm,
compt2ulong (acdata.ac_etime), compt2ulong(acdata.ac_io),

#ifdef HAS SA_ STAT

(unsigned char) acdata.ac_stat,

#endif

acdata.ac_flag & ACORE ? 'D’ : ' ',
acdata.ac_flag & AXSIG ? ‘X' : ' ',
acdata.ac_flag & AFORK ? 'F’ : ' /,
acdata.ac_flag & ASU 2 'S’ : ' ’);

}

if (ferror (fp))
err_sys("read error");

exit (0);

Figure 8.29 Print selected fields from system'’s accounting file

Section 8.14 Process Accounting 255

BSD-derived platforms don't support the ac_flag member, so we define the
HAS SA STAT constant on the platforms that do support this member. Basing the
defined symbol on the feature instead of on the platform reads better and allows us to
modify the program simply by adding the additional definition to our compilation
command. The alternative would be to use

#if defined(BSD) || defined(MACOS)

which becomes unwieldy as we port our application to additional platforms.

We define similar constants to determine whether the platform supports the ACORE
and AXSIG accounting flags. We can't use the flag symbols themselves, because on
Linux, they are defined as enum values, which we can’t use in a #ifdef expression.

To perform our test, we do the following:

1. Become superuser and enable accounting, with the accton command. Note
that when this command terminates, accounting should be on; therefore, the
first record in the accounting file should be from this command.

2. Exit the superuser shell and run the program in Figure 8.28. This should
append six records to the accounting file: one for the superuser shell, one for the
test parent, and one for each of the four test children.

A new process is not created by the execl in the second child. There is only a
single accounting record for the second child.

3. Become superuser and turn accounting off. Since accounting is off when this
accton command terminates, it should not appear in the accounting file.

4. Run the program in Figure 8.29 to print the selected fields from the accounting
file.

The output from step 4 follows. We have appended to each line the description of the
process in italics, for the discussion later.

accton e = 6, chars = 0, stat = 0: S

sh e = 2106, chars = 15632, stat = 0: S

dd e = 8, chars = 273344, stat = 0: second child
a.out e = 202, chars = 921, stat = 0: parent
a.out e = 407, chars = 0, stat = 134: F first child
a.out e = 600, chars = 0, stat = 9: F fourth child
a.out e = 801, chars = 0, stat = 0: F third child

The elapsed time values are measured in units of clock ticks per second. From
Figure 2.14, the value on this system is 100. For example, the sleep (2) in the parent
corresponds to the elapsed time of 202 clock ticks. For the first child, the sleep (4)
becomes 407 clock ticks. Note that the amount of time a process sleeps is not exact.
(We'll return to the sleep function in Chapter 10.) Also, the calls to fork and exit
take some amount of time.

Note that the ac_stat member is not the true termination status of the process, but
corresponds to a portion of the termination status that we discussed in Section 8.6. The
only information in this byte is a core-flag bit (usually the high-order bit) and the signal

256

Process Control Chapter 8

8.15

number (usually the seven low-order bits), if the process terminated abnormally. If the
process terminated normally, we are not able to obtain the exit status from the
accounting file. For the first child, this value is 128 +6. The 128 is the core flag bit, and 6
happens to be the value on this system for SIGABRT, which is generated by the call to
abort. The value 9 for the fourth child corresponds to the value of SIGKILL. We can’t
tell from the accounting data that the parent’s argument to exit was 2 and that the
third child’s argument to exit was 0.

The size of the file /etc/termcap that the dd process copies in the second child is
136,663 bytes. The number of characters of I/O is just over twice this value. It is twice
the value, as 136,663 bytes are read in, then 136,663 bytes are written out. Even though
the output goes to the null device, the bytes are still accounted for.

The ac_flag values are as we expect. The F flag is set for all the child processes
except the second child, which does the execl. The F flag is not set for the parent,
because the interactive shell that executed the parent did a fork and then an exec of
the a.out file. The first child process calls abort, which generates a SIGABRT signal
to generate the core dump. Note that neither the X flag nor the D flag is on, as they are
not supported on Solaris; the information they represent can be derived from the
ac_stat field. The fourth child also terminates because of a signal, but the SIGKILL
signal does not generate a core dump; it only terminates the process.

As a final note, the first child has a 0 count for the number of characters of I/O, yet
this process generated a core file. It appears that the 1/O required to write the core
file is not charged to the process. 0

User Identification

Any process can find out its real and effective user ID and group ID. Sometimes,
however, we want to find out the login name of the user who’s running the program.
We could call getpwuid(getuid()), but what if a single user has multiple login
names, each with the same user ID? (A person might have multiple entries in the
password file with the same user ID to have a different login shell for each entry.) The
system normally keeps track of the name we log in under (Section 6.8), and the
getlogin function provides a way to fetch that login name.

#include <unistd.h>

char *getlogin(void) ;

Returns: pointer to string giving login name if OK, NULL on error

This function can fail if the process is not attached to a terminal that a user logged in to.
We normally call these processes daemons. We discuss them in Chapter 13.

Given the login name, we can then use it to look up the user in the password
file—to determine the login shell, for example—using getpwnam.

Section 8.16 Process Times 257

8.16

To find the login name, UNIX systems have historically called the ttyname function
(Section 18.9) and then tried to find a matching entry in the utmp file (Section 6.8). FreeBSD
and Mac OS X store the login name in the session structure associated with the process table
entry and provide system calls to fetch and store this name.

System V provided the cuserid function to return the login name. This function called
getlogin and, if that failed, did a getpwuid (getuid ()). The IEEE Standard 1003.1-1988
specified cuserid, but it called for the effective user ID to be used, instead of the real user ID.
The 1990 version of POSIX.1 dropped the cuserid function.

The environment variable LOGNAME is usually initialized with the user’s login name by
login(l) and inherited by the login shell. Realize, however, that a user can modify an
environment variable, so we shouldn’t use LOGNAME to validate the user in any way. Instead,
getlogin should be used.

Process Times

In Section 1.10, we described three times that we can measure: wall clock time, user
CPU time, and system CPU time. Any process can call the times function to obtain
these values for itself and any terminated children.

#include <sys/times.h>
clock t times(struct tms *buf);

Returns: elapsed wall clock time in clock ticks if OK, -1 on error

This function fills in the tms structure pointed to by buf:

struct tms {
clock_t tms_utime; /* user CPU time */
clock_t tms_stime; /* system CPU time */
clock_t tms_cutime; /* user CPU time, terminated children */
clock t tms_cstime; /* system CPU time, terminated children */

}i

Note that the structure does not contain any measurement for the wall clock time.
Instead, the function returns the wall clock time as the value of the function, each time
it's called. This value is measured from some arbitrary point in the past, so we can’t use
its absolute value; instead, we use its relative value. For example, we call times and
save the return value. At some later time, we call times again and subtract the earlier
return value from the new return value. The difference is the wall clock time. (It is
possible, though unlikely, for a long-running process to overflow the wall clock time;
see Exercise 1.6.)

The two structure fields for child processes contain values only for children that we
have waited for with wait, waitid, or waitpid.

All the clock_t values returned by this function are converted to seconds using
the number of clock ticks per second—the _SC_CLK_TCK value returned by sysconf
(Section 2.5.4).

258 Process Control Chapter 8

Most implementations provide the getrusage(2) function. This function returns the CPU
times and 14 other values indicating resource usage. Historically, this function originated with
the BSD operating system, so BSD-derived implementations generally support more of the
fields than do other implementations.

Example

The program in Figure 8.30 executes each command-line argument as a shell command
string, timing the command and printing the values from the tms structure.

#include "apue.h"
#include <sys/times.h>

static void pr_times{clock_t, struct tms *, struct tms *);
static void do_cmd(char *);

int

main(int argc, char *argv(}l)

{

int i;

setbuf (stdout, NULL);

for (i = 1; 1 < argc; i++)
do_cmd(argv([il) ; /* once for each command-line arg */
exit (0);

}

static void

do_cmd (char *cmd) /* execute and time the "cmd" */
struct tms tmsstart, tmsend;
clock_t start, end;
int status;

printf ("\ncommand: %s\n", cmd);

if ((start = times(&tmsstart)) == -1) /* starting values */
err_sys("times error");

if ((status = system(cmd)) < 0) /* execute command */
err_sys("system() error");

if ((end = times(&tmsend)) == -1) /* ending values */
err_sys("times error");

pr_times(end-start, &tmsstart, &tmsend);
pr_exit (status) ;

}

static void
pr_times(clock_t real, struct tms *tmsstart, struct tms *tmsend)

{

static long clktck = 0;

if (clktck == 0) /* fetch clock ticks per second first time */
if ((clktck = sysconf(SC CLK TCK)) < 0)

Section 8.17 Summary 259

8.17

err_sys("sysconf error");

printf (" real: %7.2f\n", real / (double) clktck);
printf (" wuser: %7.2f\n",

(tmsend->tms_utime - tmsstart->tms_utime) / (double) clktck);
printf (" sys: $7.2f\n",

(tmsend->tms_stime - tmsstart->tms_stime) / (double) clktck);
printf (" child user: %7.2f\n",

(tmsend->tms_cutime - tmsstart->tms_cutime) / (double) clktck);
printf (" child sys: $7.2f\n",

(tmsend->tms_cstime - tmsstart->tms_cstime) / (double) clktck);

Figure 8.30 Time and execute all command-line arguments

If we run this program, we get
$./a.out "sleep 5" "date"

command: sleep 5

real: 5.02
user: 0.00
sys: 0.00
child user: 0.01
child sys: 0.00
normal termination, exit status = 0

command: date
Mon Mar 22 00:43:58 EST 2004

real: 0.01
user: 0.00
sys: 0.00
child user: 0.01
child sys: 0.00
normal termination, exit status = 0

In these two examples, all the CPU time appears in the child process, which is where the
shell and the command execute. o

Summary

A thorough understanding of the UNIX System’s process control is essential for
advanced programming. There are only a few functions to master: fork, the exec
family, _exit, wait, and waitpid. These primitives are used in many applications.
The fork function also gave us an opportunity to look at race conditions.

Our examination of the system function and process accounting gave us another
look at all these process control functions. We also looked at another variation of the
exec functions: interpreter files and how they operate. An understanding of the
various user IDs and group IDs that are provided—real, effective, and saved—is
critical to writing safe set-user-ID programs.

260 Process Control Chapter 8

Given an understanding of a single process and its children, in the next chapter we

examine the relationship of a process to other processes—sessions and job control. We
then complete our discussion of processes in Chapter 10 when we describe signals.

Exercises

8.1

8.2

8.3

8.4

8.5
8.6

8.7

In Figure 8.3, we said that replacing the call to _exit with a call to exit might cause the
standard output to be closed and printf to return -1. Modify the program to check
whether your implementation behaves this way. If it does not, héw can you simulate this
behavior?

Recall the typical arrangement of memory in Figure 7.6. Because the stack frames
corresponding to each function-call are usually stored in the stack, and because after a
vork, the child runs in the address space of the parent, what happens if the call to vfork
is from a function other than main and the child does a return from this function after the
vEork? Write a test program to verify this, and draw a picture of what’s happening.

When we execute the program in Figure 8.13 one time, as in
$./a.out

the output is correct. But if we execute the program multiple times, one right after the
other, as in

$./a.out ; ./a.out ; ./a.out
output from parent

ooutput from parent

ouotuptut from child

put from parent

output from child

utput from child

the output is not correct. What's happening? How can we correct this? Can this problem
happen if we let the child write its output first?

In the program shown in Figure 8.20, we call execl, specifying the pathname of the
interpreter file. If we called execlp instead, specifying a filename of testinterp, and if
the directory /home/sar/bin was a path prefix, what would be printed as argv [2] when
the program is run?

How can a process obtain its saved set-user-ID?

Write a program that creates a zombie, and then call system to execute the ps(1) command
to verify that the process is a zombie.

We mentioned in Section 8.10 that POSIX.1 requires that open directory streams be closed
across an exec. Verify this as follows: call opendir for the root directory, peek at your
system’s implementation of the DIR structure, and print the close-on-exec flag. Then open
the same directory for reading, and print the close-on-exec flag.

9.1

9.2

Process Relationships

Introduction

We learned in the previous chapter that there are relationships between processes. First,
every process has a parent process (the initial kernel-level process is usually its own
parent). The parent is notified when the child terminates, and the parent can obtain the
child’s exit status. We also mentioned process groups when we described the waitpid
function (Section 8.6) and how we can wait for any process in a process group to
terminate.

In this chapter, we'll look at process groups in more detail and the concept of
sessions that was introduced by POSIX.1. We'll also look at the relationship between
the login shell that is invoked for us when we log in and all the processes that we start
from our login shell.

It is impossible to describe these relationships without talking about signals, and to
talk about signals, we nced many of the concepts in this chapter. If you are unfamiliar
with the UNIX System signal mechanism, you may want to skim through Chapter 10 at
this point.

Terminal Logins

Let’s start by looking at the programs that are executed when we log in to a UNIX
system. In early UNIX systems, such as Version 7, users logged in using dumb
terminals that were connected to the host with hard-wired connections. The terminals
were either local (directly connected) or remote (connected through a modem). In either
case, these logins came through a terminal device driver in the kernel. For example, the

261

262 Process Relationships Chapter 9

common devices on PDP-11s were DH-11s and DZ-11s. A host had a fixed number of
these terminal devices, so there was a known upper limit on the number of
simultaneous logins.

As bit-mapped graphical terminals became available, windowing systems were
developed to provide users with new ways to interact with host computers.
Applications were developed to create “terminal windows” to emulate character-based
terminals, allowing users to interact with hosts in familiar ways (i.e., via the shell
command line).

Today, some platforms allow you to start a windowing system after logging in,
whereas other platforms automatically start the windowing system for you. In the
latter case, you might still have to log in, depending on how the windowing system is
configured (some windowing systems can be configured to log you in automatically).

The procedure that we now describe is used to log in to a UNIX system using a
terminal. The procedure is similar regardless of the type of terminal we use—it could
be a character-based terminal, a graphical terminal emulating a simple character-based
terminal, or a graphical terminal running a windowing system.

BSD Terminal Logins

This procedure has not changed much over the past 30 years. The system administrator
creates a file, usually /etc/ttys, that has one line per terminal device. Each line
specifies the name of the device and other parameters that are passed to the getty
program. One parameter is the baud rate of the terminal, for example. When the
system is bootstrapped, the kernel creates process ID 1, the init process, and itis init
that brings the system up multiuser. The init process reads the file /etc/ttys and,
for every terminal device that allows a login, does a fork followed by an exec of the
program getty. This gives us the processes shown in Figure 9.1.

process ID 1
init
4 T N
|
o ! h forks once
i fork .
I per terminal
init

execs getty

} each child
exec

getty

Figure 9.1 Processes invoked by init to allow terminal logins

All the processes shown in Figure 9.1 have a real user ID of 0 and an effective user ID of
0 (ie., they all have superuser privileges). The init process also execs the getty
program with an empty environment.

Section 9.2 Terminal Logins 263

It is getty that calls open for the terminal device. The terminal is opened for
reading and writing. If the device is a modem, the oper. may delay inside the device
driver until the modem is dialed and the call is answered. Once the device is open, file
descriptors 0, 1, and 2 are set to the device. Then getty outputs something like
login: and waits for us to enter our user name. If the terminal supports multiple
speeds, getty can detect special characters that tell it to change the terminal’s speed
(baud rate). Consult your UNIX system manuals for additional details on the getty
program and the data files (get tytab) that can drive its actions.

When we enter our user name, getty’s job is complete, and it then invokes the
login program, similar to

execle("/bin/login", "login", "-p", username, (char *)0, envp);

(There can be options in the gettytab file to have it invoke other programs, but the
default is the login program.) init invokes getty with an empty environment;
getty creates an environment for login (the envp argument) with the name of the
terminal (something like TERM=foo, where the type of terminal foo is taken from the
gettytab file) and any environment strings that are specified in the gettytab. The
-p flag to login tells it to preserve the environment that it is passed and to add to that
environment, not replace it. Figure 9.2 shows the state of these processes right after
login has been invoked.

process ID 1

reads /etc/ttys;
L forks once per terminal;
- create empty environment

'fork &

init }
P N
| inie |

exec) .
opens terminal device

1 =~ - .

! (file descriptors 0, 1, 2);
i reads user name;
initial environment set

getty

exec
.
login

Figure 9.2 State of processes after login has been invoked

All the processes shown in Figure 9.2 have superuser privileges, since the original init
process has superuser privileges. The process 1D of the bottom three processes in
Figure 9.2 is the same, since the process ID does not change across an exec. Also, all
the processes other than the original init process have a parent process ID of 1.

The login program does many things. Since it has our user name, it can call
getpwnan to fetch our password file entry. Then login calls getpass(3) to display
the prompt Password: and read our password (with echoing disabled, of course). It
calls crypt(3) to encrypt the password that we entered and compares the encrypted

264 Process Relationships Chapter 9

result to the pw_passwd field from our shadow password file entrv. If the login
attempt fails because of an invalid password (after a few tries), login calls exit with
an argument of 1. This termination will be noticed by the parent (init), and it will do
another fork followed by an exec of getty, starting the procedure over again for this
terminal.

This is the traditional authentication procedure used on UNIX systems. Modern
UNIX systems have evolved to support multiple authentication procedures. For
example, FreeBSD, Linux, Mac OS X, and Solaris all support a more flexible scheme
known as PAM (Pluggable Authentication Modules). PAM allows an administrator to
configure the authentication methods to be used to access services that are written to
use the PAM library.

If our application needs to verify that a user has the appropriate permission to
perform a task, we can either hard code the authentication mechanism in the
application, or we can use the PAM library to give us the equivalent functionality. The
advantage to using PAM is that administrators can configure different ways to
authenticate users for different tasks, based on the local site policies.

If we log in correctly, Llogin will

* Change to our home directory (chdir)
* Change the ownership of our terminal device (chown) so we own it

* Change the access permissions for our terminal device so we have permission to
read from and write to it

* Set our group IDs by calling setgid and initgroups

¢ Initialize the environment with all the information that login has: our home
directory (HOME), shell (SHELL), user name (USER and LOGNAME), and a default
path (PATH)

* Change to our user ID (setuid) and invoke our login shell, as in

execl ("/bin/sh", "-sh", (char *)0);

The minus sign as the first character of argv [0] is a flag to all the shells that they are being
invoked as a login shell. The shells can look at this character and modify their start-up
accordingly.

The login program really does more than we’ve described here. It optionally
prints the message-of-the-day file, checks for new mail, and performs other tasks. We're
interested only in the features that we’ve described.

Recall from our discussion of the setuid function in Section 8.11 that since it is
called by a superuser process, setuid changes all three user IDs: the real user ID,
effective user ID, and saved set-user-ID. The call to setgid that was done earlier by
login has the same effect on all three group IDs.

At this point, our login shell is running. Its parent process 1D is the original init
process (process ID 1), so when our login shell terminates, init is notified (it is sent a
SIGCHLD signal), and it can start the whole procedure over again for this terminal. File
descriptors 0, 1, and 2 for our login shell are set to the terminal device. Figure 9.3 shows
this arrangement. '

Section 9.2 Terminal Logins 265

_process DT

i in:it——] .

: i(through getty and login
Y J
login shell

fd0,1,2
Y

| H !
' terminal i
- device driver :

% hard-wired connection

I I
" userata

terminal
Figure 9.3 Arrangement of processes after everything is set for a terminal login

Our login shell now reads its start-up files (.profile for the Bourne shell and
Korn shell; .bash_profile, .bash_login, or .profile for the GNU Bourne-again
shell: and .cshrc and .login for the C shell). These start-up files usually change
some of the environment variables and add many additional variables to the
environment. For example, most users set their own PATH and often prompt for the
actual terminal type (TERM). When the start-up files are done, we finally get the shell’s
prompt and can enter commands.

Mac OS X Terminal Logins

On Mac OS X, the terminal login process follows the same steps as in the BSD login
process, since Mac OS X is based in part on FreeBSD. With Mac OS X, however, we are
presented with a graphical-based login screen from the start.

Linux Terminal Logins

The Linux login procedure is very similar to the BSD procedure. Indeed, the Linux
login command is derived from the 4.3BSD login command. The main difference
between the BSD login procedure and the Linux login procedure is in the way the
terminal configuration is specified.

On Linux, /etc/inittab contains the configuration information specifying the
terminal devices for which init should start a getty process, similar to the way it is
done on System V. Depending on the version of getty in use, the terminal
characteristics are specified either on the command line (as with agetty) or in the file
Jetc/gettydefs (as with mgetty).

266 Process Relatxonshlps Chapter 9

Solaris Terminal Logins

Solaris supports two forms of terminal logins: (a) getty style, as described previously
for BSD, and (b) ttymon logins, a feature introduced with SVR4. Normally, getty is
used for the console, and ttymon is used for other terminal logins.

The ttymon command is part of a larger facility termed SAF, the Service Access
Facility. The goal of the SAF was to provide a consistent way to administer services that
provide access to a system. (See Chapter 6 of Rago [1993] for more details.) For our
purposes, we end up with the same picture as in Figure 9.3, with a different set of steps
between init and the login shell. init is the parent of sac (the service access
controller), which does a fork and exec of the ttymon program when the system
enters multiuser state. The ttymon program monitors all the terminal ports listed in its
configuration tile and does a fork when we’ve entered our login name. This child of
ttymon does an exec of 1ogin, and login prompts us for our password. Once this is
done, login execs our login shell, and we’re at the position shown in Figure 9.3. One
difference is that the parent of our login shell is now ttymon, whereas the parent of the
login shell from a getty loginis init.

9.3 Network Logins

The main (physical) difference between logging in to a system through a serial terminal
and logging in to a system through a network is that the connection between the
terminal and the computer isn’t point-to-point. In this case, login is simply a service
available, just like any other network service, such as FTP or SMTP.

With the terminal logins that we described in the previous section, init knows
which terminal devices are enabled for logins and spawns a getty process for each
device. In the case of network logins, however, all the logins come through the kernel’s
network interface drivers (e.g., the Ethernet driver), and we don’t know ahead of time
how many of these will occur. Instead of having a process waiting for each possible
login, we now have to wait for a network connection request to arrive.

To allow the same software to process logins over both terminal logins and network
logins, a software driver called a pseudo terminal is used to emulate the behavior of a
serial terminal and map terminal operations to network operations, and vice versa. (In
Chapter 19, we'll talk about pseudo terminals in detail.)

BSD Network Logins

In BSD, a single process waits for most network connections: the inetd process,
sometimes called the Internet superserver. In this section, we’ll look at the sequence of
processes involved in network logins for a BSD system. We are not interested in the
detailed network programming aspects of these processes; refer to Stevens, Fenner, and
Rudoff [2004] for all the details.

As part of the system start-up, init invokes a shell that executes the shell script
/etc/rc. One of the dacmons that is started by this shell script is inetd. Once the
shell script terminates, the parent process of inetd becomes init; inetd waits for

Section 9.3 Network Logins 267

TCP/IP connection requests to arrive at the host. When a connection request arrives for
it to handle, inetd does a fork and exec of the appropriate program.

Let's assume that a TCP connection request arrives for the TELNET server.
TELNET is a remote login application that uses the TCP protocol. A user on another
host (that is connected to the server’s host through a network of some form) or on the
same host initiates the login by starting the TELNET client:

telnet hostname

The client opens a TCP connection to hostname, and the program that’s started on
hostname is called the TELNET server. The client and the server then exchange data
across the TCP connection using the TELNET application protocol. What has happened
is that the user who started the client program is now logged in to the server’s host.
(This assumes, of course, that the user has a valid account on the server’s host.)
Figure 9.4 shows the sequence of processes involved in executing the TELNET server,
called telnetd.

process ID 1
init
. fork/exec of /bin/sh, which
executes shell script /etc/rc
Y when system comes up multiuser
TCP connection request .
inetd

from TELNET client |

} fork when connection request
' arrives from TELNET client
inetd
exec
telnetd

Figure 9.4 Sequence of processes involved in executing TELNET server

The telnetd process then opens a pseudo-terminal device and splits into two
processes using fork. The parent handles the communication across the network
connection, and the child does an exec of the login program. The parent and the
child are connected through the pseudo terminal. Before doing the exec, the child sets
up file descriptors 0, 1, and 2 to the pseudo terminal. If we log in correctly, login
performs the same steps we described in Section 9.2: it changes to our home directory
and sets our group IDs, user ID, and our initial environment. Then login replaces
itself with our login shell by calling exec. Figure 9.5 shows the arrangement of the
processes at this point.

Obviously, a lot is going on between the pseudo-terminal device driver and the
actual user at the terminal. We'll show all the processes involved in this type of
arrangement in Chapter 19 when we talk about pseudo terminals in more detail.

268 Process Relationships Chapter 9

_processID 1

init
:
: lthrough inetd, telnetd,
: and login
Y
login shell

[

fd0,1,2

\

pseudo-terminal
device driver

; } network connection through

telnetd server and telnet client
user at a
terminal

Figure 9.5 Arrangement of processes after everything is set for a network login

The important thing to understand is that whether we log in through a terminal
(Figure 9.3) or a network (Figure 9.5), we have a login shell with its standard input,
standard output, and standard error connected to either a terminal device or a
pseudo-terminal device. We’ll see in the coming sections that this login shell is the start
of a POSIX.1 session, and that the terminal or pseudo terminal is the controlling
terminal for the session.

Mac OS X Network Logins

Logging in to a Mac OS X system over a network is identical to a BSD system, because
Mac OS X is based partially on FreeBSD.

Linux Network Logins

Network logins under Linux are the same as under BSD, except that an alternate inetd
process is used, called the extended Internet services daemon, xinetd. The xinetd
process provides a finer level of control over services it starts than does inetd.

Solaris Network Logins

The scenario for network logins under Solaris is almost identical to the steps under BSD
and Linux. An inetd server is used similar to the BSD version. The Solaris version has
the additional ability to run under the service access facility framework, although it is
not configured to do so. Instead, the inetd server is started by init. Either way, we
end up with the same overall picture as in Figure 9.5.

Section 9.4 Process Groups 269

9.4

Process Groups

In addition to having a process ID, each process also belongs to a process group. We'll
encounter process groups again when we discuss signals in Chapter 10.

A process group is a collection of one or more processes, usually associated with the
same job (job control is discussed in Section 9.8), that can receive signals from the same
terminal. Each process group has a unique process group ID. Process group IDs are
similar to process IDs: they are positive integers and can be stored in a pid_t data type.
The function getpgrp returns the process group ID of the calling process.

#include <unistd.h>

pid_t getpgrp (void);

Returns: process group ID of calling process

In older BSD-derived systems, the getpgrp function took a pid argument and returned
the process group for that process. The Single UNIX Specification defines the getpgid
function as an XSI extension that mimics this behavior.

#include <unistd.h>

pid_t getpgid(pid_t pid);

Returns: process group ID if OK, -1 on error

If pid is 0, the process group ID of the calling process is returned. Thus,
getpgid(0); ° '

is equivalent to
getpgrp();

Each process group can have a process group leader. The leader is identified by its
process group ID being equal to its process ID.

It is possible for a process group leader to create a process group, create processes in
the group, and then terminate. The process group still exists, as long as at least one
process is in the group, regardless of whether the group leader terminates. This is
called the process group lifetime—the period of time that begins when the group is
created and ends when the last remaining process leaves the group. The last remaining
process in the process group can either terminate or enter some other process group.

A process joins an existing process group or creates a new process group by calling
setpgid. (In the next section, we'll see that setsid also creates a new process group.)

#include <unistd.h>

int setpgid(pid_t pid, pid_t pgid);

Returns: 0 if OK, -1 on error

270

Process Relationships Chapter ¢

9.5

This function sets the process group ID to pgid in the process whose process ID equals
pid. If the two arguments are equal, the process specified by pid becomes a process
group leader. If pid is 0, the process ID of the caller is used. Also, if pgid is 0, the process
ID specified by pid is used as the process group ID.

A process can set the process group ID of only itself or any of its children.
Furthermore, it can’t change the process group ID of one of its children after that child
has called one of the exec functions.

In most job-control shells, this function is called after a fork to have the parent set
the process group ID of the child, and to have the child set its own process group ID.
One of these calls is redundant, but by doing both, we are guaranteed that the child is
placed into its own process group before either process assumes that this has happened.
If we didn’t do this, we would have a race condition, since the child’s process group
membership would depend on which process executes first.

When we discuss signals, we’ll see how we can send a signal to either a single
process (identified by its process ID) or a process group (identified by its process group
ID). Similarly, the waitpid function from Section 8.6 lets us wait for either a single
process or one process from a specified process group.

Sessions

A session is a collection of one or more process groups. For example, we could have the
arrangement shown in Figure 9.6. Here we have three process groups in a single
session.

rTm e il FT T T T TS s al | 1
P 7 | I I ! ‘
} i |login shell | 1 I procl proc2 I : proc3 proc4d :
| i | |
‘ Lo mmm o J b e e . J : : |
process group process group : ‘ l
|
: proch l
| |]
L e e e e e e J
process group |
‘_ —
session

Figure 9.6 Arrangement of processes into process groups and sessions

The processes in a process group are usually placed there by a shell pipeline. For
example, the arrangement shown in Figure 9.6 could have been generated by shell
commands of the form

procl | proc2 &
proc3 | proc4 | procs

Section 9.5 Sessions 271

A process establishes a new session by calling the setsid function.

1 #include <unistd.h> 7}
1

pid_t setsid(void); 1

‘\

I

]

Returns: process group 1D if OK, -1 on error

If the calling process is not a process group leader, this function creates a new session.
Three things happen.

1. The process becomes the session leader of this new session. (A session leader is
the process that creates a session.) The process is the only process in this new
session.

2. The process becomes the process group leader of a new process group. The new
process group 1D is the process ID of the calling process.

3. The process has no controlling terminal. (We'll discuss controlling terminals in
the next section.) If the process had a controlling terminal before calling
setsid, that association is broken.

This function returns an error if the caller is already a process group leader. To ensure
this is not the case, the usual practice is to call fork and have the parent terminate and
the child continue. We are guaranteed that the child is not a process group leader,
because the process group ID of the parent is inherited by the child, but the child gets a
new process ID. Hence, it is impossible for the child’s process ID to equal its inherited
process group ID.

The Single UNIX Specification talks only about a “session leader.” There is no
“session ID” similar to a process ID or a process group ID. Obviously, a session leader
is a single process that has a unique process ID, so we could talk about a session ID that
is the process ID of the session leader. This concept of a session ID was introduced in
SVR4. Historically, BSD-based systems didn’t support this notion, but have since been
updated to include it. The getsid function returns the process group ID of a process’s
session leader. The getsid function is included as an XSI extension in the Single UNIX
Specification.

Some implementations, such as Solaris, join with the Single UNIX Specification in the practice
of avoiding the use of the phrase “session ID,” opting instead to refer to this as the “process

group ID of the session leader.” The two are equivalent, since the session leader is always the
leader of a process group.

#include <unistd.h>
pid_t getsid(pid t pid);

Returns: session leader’s process group ID if OK, ~1 on error

If pid is 0, getsid returns the process group ID of the calling process’s session leader.
For security reasons, some implementations may restrict the calling process from
obtaining the process group ID of the session leader if pid doesn’t belong to the same
session as the caller.

272 Process Relationships Chapter 9

9.6 Controlling Terminal

Sessions and process groups have a few other characteristics.

* A session can have a single controlling terminal. This is usually the terminal
device (in the case of a terminal login) or pseudo-terminal device (in the case of
a network login) on which we log in.

* The session leader that establishes the connection to the controlling terminal is
called the controlling process.

* The process groups within a session can be divided into a single foreground
process group and one or more background process groups.

* If a session has a controlling terminal, it has a single foreground process group,
and all other process groups in the session are background process groups.

¢ Whenever we type the terminal’s interrupt key (often DELETE or Control-C),
this causes the interrupt signal be sent to all processes in the foreground process
group.

* Whenever we type the terminal’s quit key (often Control-backslash), this causes
the quit signal to be sent to all processes in the foreground process group.

e If a modem (or network) disconnect is detected by the terminal interface, the
hang-up signal is sent to the controlling process (the session leader).

These characteristics are shown in Figure 9.7.

session
‘r__ — - —_— — it — N .
| il r-- - - -T- - -T-T === A ['__—_—_—_'——____'\‘
’ [| | I | i
i | login sh(ﬂ i I procl proc2 I ! ' proc3 ' proc4d (I
[S— | L l
f Lmm e o J b o
" background process group background process group : '
session leader = ! !
| controlling process : procs :
i |
b e e e ___ J
| 2 foreground process group
)
L _\% -
Z >
o
2\ %

controlling
terminal

Figure 9.7 Process groups and sessions showing controlling terminal

Section 9.7 tcgetpgrp, tcsetpgrp, and tcgetsid Functions 273

9.7

Usually, we don’t have to worry about the controlling terminal; it is established
automatically when we log in.

POSIX.]1 leaves the choice of the mechanism used to allocate a controlling terminal up to each
individual implementation. We'll show the actual steps in Section 194.

Systems derived from UNIX System V allocate the controlling terminal for a session when the
session leader opens the first terminal device that is not already associated with a session. This
assumes that the call to open by the session leader does not specify the O_NOCTTY flag
(Section 3.3). :

BSD-based systems allocate the controlling terminal for a session when the session leader calls
ioctl with a request argument of TIOCSCTTY (the third argument is a null pointer). The
session cannot already have a controlling terminal for this call to succeed. (Normally, this call
to ioctl follows a call to setsid, which guarantees that the process is a session leader
without a controlling terminal) The POSIX.1 O_NOCTTY flag to open is not used by
BSD-based systems, except in compatibility-mode support for other systems.

There are times when a program wants to talk to the controlling terminal, regardless
of whether the standard input or standard output is redirected. The way a program
guarantees that it is talking to the controlling terminal is to open the file /dev/tty.
This special file is a synonym within the kernel for the controlling terminal. Naturally,
if the program doesn’t have a controlling terminal, the open of this device will fail.

The classic example is the getpass(3) function, which reads a password (with
terminal echoing turned off, of course). This function is called by the crypt(1) program
and can be used in a pipeline. For example,

crypt < salaries | lpr

decrypts the file salaries and pipes the output to the print spooler. Because crypt
reads its input file on its standard input, the standard input can’t be used to enter the
password. Also, crypt is designed so that we have to enter the encryption password
each time we run the program, to prevent us from saving the password in a file (which
could be a security hole).

There are known ways to break the encoding used by the crypt program. See
Garfinkel et al. [2003] for more details on encrypting files.

tcgetpgrp, tcsetpgrp, and tcgetsid Functions

We need a way to tell the kernel which process group is the foreground process group,
so that the terminal device driver knows where to send the terminal input and the
terminal-generated signals (Figure 9.7).

r #include <unistd.h>
pid_t tcgetpgrp(int filedes) ;
Returns: process group ID of foreground process group if OK, -1 on error

int tcsetpgrp (int filedes, pid_t pgrpid) ;

Returns: 0 if OK, -1 on error

274

Process Relationships Chapter 9

9.8

The function tcgetpgrp returns the process group ID of the foreground process group
associated with the terminal open on filedes.

If the process has a controlling terminal, the process can call tcsetpgrp to set the
foreground process group ID to pgrpid. The value of pgrpid must be the process group
ID of a process group in the same session, and filedes must refer to the controlling
terminal of the session.

Most applications don't call these two functions directly. They are normally called
by job-control shells.

The Single UNIX Specification defines an XSI extension called tcgetsid to allow
an application to obtain the process group ID for the session leader given a file
descriptor for the controlling TTY.

#include <termios.h>
pid_t tcgetsid(int filedes) ;

Returns: session leader’s process group ID if OK, -1 on error

Applications that need to manage controlling terminals can use tcgetsid to
identify the session ID of the controlling terminal’s session leader (which is equivalent
to the sessiondeader’s process group ID).

Job Control

Job control is a feature added to BSD around 1980. This feature allows us to start
multiple jobs (groups of processes) from a single terminal and to control which jobs can
access the terminal and which jobs are to run in the background. Job control requires
three forms of support:

1. A shell that supports job control
2. The terminal driver in the kernel must support job control
3. The kernel must support certain job-control signals

SVR3 provided a different form of job control called shell layers. The BSD form of job control,
however, was selected by POSIX.1 and is what we describe here. In earlier versions of the
standard, job control support was optional, but POSIX.1 now requires platforms to support it.

From our perspective, using job control from a shell, we can start a job in either the
foreground or the background. A job is simply a collection of processes, often a pipeline
of processes. For example,

vi main.c
starts a job consisting of one process in the foreground. The commands

pr *.c | lpr &

make all &
start two jobs in the background. All the processes invoked by these background jobs
are in the background.

As we said, to use the features provided by job control, we need to be using a shell
that supports job control. With older systems, it was simple to say which shells

Section 9.8 Job Control 275

supported job control and which didn’t. The C shell supported job control, the Bourne
shell didn’t, and it was an option with the Korn shell, depending whether the host
supported job control. But the C shell has been ported to systems (e.g., earlier versions
of System V) that don’t support job control, and the SVR4 Bourne shell, when invoked
by the name jsh instead of sh, supports job control. The Korn shell continues to
support job control if the host does. The Bourne-again shell also supports job control.
We'll just talk generically about a shell that supports job control, versus one that
doesn’t, when the difference between the various shells doesn’t matter.

When we start a background job, the shell assigns it a job identifier and prints one
or more of the process IDs. The following script shows how the Korn shell handles this:

$ make all > Make.out &

[1] 1475

$ pr *.c | lpr &

[2] 1490

$ just press RETURN
(2] + Done pr *.c | lpr &

[1] + Done make all > Make.out &

The make is job number 1 and the starting process ID is 1475. The next pipelire is job
number 2 and the process ID of the first process is 1490. When the jobs are done and
when we press RETURN, the shell tells us that the jobs are complete. The reason we
have to press RETURN is to have the shell print its prompt. The shell doesn'’t print the
changed status of background jobs at any random time-—only right before it prints its
prompt, to let us enter a new command line. If the shell didn’t do this, it could output
while we were entering an input line.

The interaction with the terminal driver arises because a special terminal character
affects the foreground job: the suspend key (typically Control-Z). Entering this
character causes the terminal driver to send the SIGTSTP signal to all processes in the
foreground process group. The jobs in any background process groups aren’t affected.
The terminal driver looks for three special characters, which generate signals to the
foreground process group.

o The interrupt character (typically DELETE or Control-C) generates SIGINT.
e The quit character (typically Control-backslash) generates SIGQUIT.
o The suspend character (typically Control-Z) generates SIGTSTP.

In Chapter 18, we'll see how we can change these three characters to be any characters
we choose and how we can disable the terminal driver’s processing of these special
characters.

Another job control condition can arise that must be handled by the terminal driver.
Since we can have a foreground job and one or more background jobs, which of these
receives the characters that we enter at the terminal? Only the foreground job receives
terminal input. It is not an error for a background job to try to read from the terminal,
but the terminal driver detects this and sends a special signal to the background job:
SIGTTIN. This signal normally stops the background job; by using the shell, we are
notified of this and can bring the job into the foreground so that it can read from the
terminal. The following demonstrates this:

276 Process Relationships Chapter 9
$ cat > temp.foo & start in background, but it'll read from standard input
[1] 1681
$ we press RETURN
[1] + Stopped (SIGTTIN) cat > temp.foo &
$ £g %1 . bring job number 1 into the foreground
cat > temp.foo the shell tells us which job is now in the foreground
hello, world “enter one line
“D type the end-of-file character
$ cat temp.foo check that the one line was put into the file

hello, world

The shell starts the cat process in the background, but when cat tries to read its
standard input (the controlling terminal), the terminal driver, knowing that it is a
background job, sends the SIGTTIN signal to the background job. The shell detects this
change in status of its child (recall our discussion of the wait and waitpid function in
Section 8.6) and tells us that the job has been stopped. We then move the stopped job
into the foreground with the shell’s fg command. (Refer to the manual page for the
shell that you are using, for all the details on its job control commands, such as £g and
bg, and the various ways to identify the different jobs.) Doing this causes the shell to
place the job into the foreground process group (tcsetpgrp) and send the continue
signal (SIGCONT) to the process group. Since it is now in the foreground process group,
the job can read from the controlling terminal.

What happens if a background job outputs to the controlling terminal? This is an
option that we can allow or disallow. Normally, we use the stty(1) command to
change this option. (We'll see in Chapter 18 how we can change this option from a
program.) The following shows how this works:

$ cat temp.foo & execute in background

1] 1719

$ hello, world the output from the background job appears after the prompt
we press RETURN

[1] + Done cat temp.foo &

$ stty tostop disable ability of background jobs to output to controlling terminal

$ cat temp.foo & try it again in the background

(1] 1721

$ we press RETURN and find the job is stopped

{1] + Stopped(SIGTTOU) cat temp.foo &

$ fg %1 resume stopped job in the foreground

cat temp.foo the shell tells us which job is now in the foreground

hello, world and here is its output

When we disallow background jobs from writing to the controllirig terminal, cat will
block when it tries to write to its standard output, because the terminal driver identifies
the write as coming from a background process and sends the job the SIGTTOU signal.
As with the previous example, when we use the shell’s £g command to bring the job
into the foreground, the job completes.

Figure 9.8 summarizes some of the features of job control that we’ve been
describing. The solid lines through the terminal driver box mean that the terminal I/0O
and the terminal-generated signals are always connected from the foreground process

